

Overview of TTM

Thomas Hellström
VMware Inc.

Outline

● What is TTM?
● Components

● Design philosophy
● Buffer objects
● Pros – Cons

● Future wishlist

What is TTM?

● TTM is short for “Translation Table Maps”, which
refers to the initial functionality of transparently
handling data that could be flipped in- and out of a
Translation Table / GART

● Now a set of utilities that can be used to manage
buffer objects in device / system memory as well as
locking, mapping, accounting and execution
management.

● Does not come with a user-space interface. Can , for
example be interfaced with GEM.

Components

● Buffer objects, utilizing device-, GART- or system
memory.

● Accounting and paging – buffer objects are paged
out on a global basis.

● User-space mapping utilities.
● Execution utilities.
● User-space object utilities
● Locking utilities

Design philosophy

● Aggressively utilize available resources – free on
demand.

● Fine grained locking.
● Simplify user-space sub-allocation

Buffer objects

● Each TTM device supports a driver-defined number
of memory regions for data placement. (Device
memory / GARTs).

● Each memory region has its own LRU list for buffer
eviction.

● Swap LRU list is global.
● TTM currently supports only coherent memory.

Achieves this by write-combined / uncached CPU
mappings when required.

Buffer objects – ct'd

● Buffer objects can be pinned in current location
(root only). Scanout- and capture buffers.

● Buffer objects can be “reserved” from kernel space.
Acts like taking a mutex + removing from LRU
lists. Need to be reserved when moved.

● User-space maps are persistent. Object may move
while user-space writes to it. Page tables rewritten.

● In - kernel maps are temporary (reserved objects) or
persistent (pinned objects).

Pros - Cons

● Well established /
tested: Nouveau –
Radeon – Vmwgfx –
(VIA)

● Fine-grained locking
● Set of utilities
● Supports user-space

sub-allocation

● Fine-grained locking
● Complex API / Code
● Documentation

Future wishlist

● Asynchronous memory management for devices
with long command queues.

● Read / Write dirty – tracking.

Supporting shared buffer objects
● Memory regions shareable between TTM devices.
● User-space mapping.
● Non-coherent memory – Needs API to flush CPU

caches.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

