Haven't reviewed it completely yet, but this is all I have done.
On 4 March 2015 at 14:19, pi-cheng.chen pi-cheng.chen@linaro.org wrote:
+static int mtk_cpufreq_notify(struct notifier_block *nb,
unsigned long action, void *data)
+{
struct cpufreq_freqs *freqs = data;
struct cpu_opp_table *opp_tbl = dvfs_info->opp_tbl;
There is only one dvfs info ? but there are two clusters, sorry got confused a bit..
int old_vproc, new_vproc, old_index, new_index;
if (!cpumask_test_cpu(freqs->cpu, &dvfs_info->cpus))
return NOTIFY_DONE;
old_vproc = regulator_get_voltage(dvfs_info->proc_reg);
old_index = cpu_opp_table_get_volt_index(old_vproc);
new_index = cpu_opp_table_get_freq_index(freqs->new * 1000);
new_vproc = opp_tbl[new_index].vproc;
if (old_vproc == new_vproc)
return 0;
if ((action == CPUFREQ_PRECHANGE && old_vproc < new_vproc) ||
(action == CPUFREQ_POSTCHANGE && old_vproc > new_vproc))
mtk_cpufreq_voltage_trace(old_index, new_index);
return NOTIFY_OK;
+}
+static struct notifier_block mtk_cpufreq_nb = {
.notifier_call = mtk_cpufreq_notify,
+};
+static int cpu_opp_table_init(struct device *dev) +{
struct device *cpu_dev = dvfs_info->cpu_dev;
struct cpu_opp_table *opp_tbl;
struct dev_pm_opp *opp;
int ret, cnt, i;
unsigned long rate, vproc, vsram;
ret = of_init_opp_table(cpu_dev);
if (ret) {
dev_err(dev, "Failed to init mtk_opp_table: %d\n", ret);
return ret;
}
rcu_read_lock();
cnt = dev_pm_opp_get_opp_count(cpu_dev);
if (cnt < 0) {
dev_err(cpu_dev, "No OPP table is found: %d", cnt);
ret = cnt;
goto out_free_opp_tbl;
}
opp_tbl = devm_kcalloc(dev, (cnt + 1), sizeof(struct cpu_opp_table),
GFP_ATOMIC);
if (!opp_tbl) {
ret = -ENOMEM;
goto out_free_opp_tbl;
}
for (i = 0, rate = 0; i < cnt; i++, rate++) {
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
if (IS_ERR(opp)) {
ret = PTR_ERR(opp);
goto out_free_opp_tbl;
}
vproc = dev_pm_opp_get_voltage(opp);
vproc = get_regulator_voltage_ceil(dvfs_info->proc_reg, vproc);
vsram = vproc + VOLT_SHIFT_LOWER_LIMIT;
vsram = get_regulator_voltage_ceil(dvfs_info->sram_reg, vsram);
if (vproc < 0 || vsram < 0) {
ret = -EINVAL;
goto out_free_opp_tbl;
}
opp_tbl[i].freq = rate;
opp_tbl[i].vproc = vproc;
opp_tbl[i].vsram = vsram;
}
opp_tbl[i].freq = 0;
opp_tbl[i].vproc = -1;
opp_tbl[i].vsram = -1;
dvfs_info->opp_tbl = opp_tbl;
+out_free_opp_tbl:
rcu_read_unlock();
of_free_opp_table(cpu_dev);
return ret;
+}
+static struct cpufreq_cpu_domain *get_cpu_domain(struct list_head *domain_list,
int cpu)
+{
struct list_head *node;
list_for_each(node, domain_list) {
struct cpufreq_cpu_domain *domain;
domain = container_of(node, struct cpufreq_cpu_domain, node);
if (cpumask_test_cpu(cpu, &domain->cpus))
return domain;
}
return NULL;
+}
+static int mtk_cpufreq_probe(struct platform_device *pdev)
On a dual cluster big LITTLE (your system), how many times is probe getting called ? Once or twice, i.e. for each cluster ??
+{
struct clk *inter_clk;
struct cpufreq_dt_platform_data *pd;
struct platform_device *dev;
unsigned long inter_freq;
int cpu, ret;
inter_clk = clk_get(&pdev->dev, NULL);
How is this supposed to work ? How will pdev->dev give intermediate clock ?
if (IS_ERR(inter_clk)) {
if (PTR_ERR(inter_clk) == -EPROBE_DEFER) {
dev_warn(&pdev->dev, "clock not ready. defer probeing.\n");
return -EPROBE_DEFER;
}
dev_err(&pdev->dev, "Failed to get intermediate clock\n");
return -ENODEV;
}
inter_freq = clk_get_rate(inter_clk);
pd = devm_kzalloc(&pdev->dev, sizeof(*pd), GFP_KERNEL);
if (!pd)
return -ENOMEM;
dvfs_info = devm_kzalloc(&pdev->dev, sizeof(*dvfs_info), GFP_KERNEL);
if (!dvfs_info)
return -ENOMEM;
Instead of two allocations, you could have made pd part of dvfs_info and allocated only once.
pd->independent_clocks = 1,
s/,/; ??
INIT_LIST_HEAD(&pd->domain_list);
for_each_possible_cpu(cpu) {
struct device *cpu_dev;
struct cpufreq_cpu_domain *new_domain;
struct regulator *proc_reg, *sram_reg;
cpu_dev = get_cpu_device(cpu);
This should be done in the below if block only.
if (!dvfs_info->cpu_dev) {
proc_reg = regulator_get_exclusive(cpu_dev, "proc");
sram_reg = regulator_get_exclusive(cpu_dev, "sram");
if (PTR_ERR(proc_reg) == -EPROBE_DEFER ||
PTR_ERR(sram_reg) == -EPROBE_DEFER)
return -EPROBE_DEFER;
if (!IS_ERR_OR_NULL(proc_reg) &&
!IS_ERR_OR_NULL(sram_reg)) {
dvfs_info->cpu_dev = cpu_dev;
dvfs_info->proc_reg = proc_reg;
dvfs_info->sram_reg = sram_reg;
cpumask_copy(&dvfs_info->cpus,
&cpu_topology[cpu].core_sibling);
}
}
if (get_cpu_domain(&pd->domain_list, cpu))
continue;
This isn't required if you do below..
new_domain = devm_kzalloc(&pdev->dev, sizeof(*new_domain),
GFP_KERNEL);
if (!new_domain)
return -ENOMEM;
cpumask_copy(&new_domain->cpus,
&cpu_topology[cpu].core_sibling);
new_domain->intermediate_freq = inter_freq;
list_add(&new_domain->node, &pd->domain_list);
Just issue a 'break' from here as you don't want to let this loop run again.
}
if (IS_ERR_OR_NULL(dvfs_info->proc_reg) ||
IS_ERR_OR_NULL(dvfs_info->sram_reg)) {
dev_err(&pdev->dev, "Failed to get regulators\n");
return -ENODEV;
}
If you really need these, then don't allocate new_domain unless you find a CPU with these regulators..
ret = cpu_opp_table_init(&pdev->dev);
if (ret) {
dev_err(&pdev->dev, "Failed to setup cpu_opp_table: %d\n",
ret);
return ret;
}
ret = cpufreq_register_notifier(&mtk_cpufreq_nb,
CPUFREQ_TRANSITION_NOTIFIER);
if (ret) {
dev_err(&pdev->dev, "Failed to register cpufreq notifier\n");
return ret;
}
Don't want to free OPP table here on error ?
dev = platform_device_register_data(NULL, "cpufreq-dt", -1, pd,
sizeof(*pd));
So this routine is going to be called only once. Then how are you initializing stuff for both the clusters in the upper for loop ? It looked very very confusing.
if (IS_ERR(dev)) {
dev_err(&pdev->dev,
"Failed to register cpufreq-dt platform device\n");
return PTR_ERR(dev);
}
return 0;
+}
+static const struct of_device_id mtk_cpufreq_match[] = {
{
.compatible = "mediatek,mtk-cpufreq",
Can't you use "mediatek,mt8173" here ?
},
{}
+}; +MODULE_DEVICE_TABLE(of, mtk_cpufreq_match);
+static struct platform_driver mtk_cpufreq_platdrv = {
.driver = {
.name = "mtk-cpufreq",
.of_match_table = mtk_cpufreq_match,
},
.probe = mtk_cpufreq_probe,
+}; +module_platform_driver(mtk_cpufreq_platdrv);