From: Mark Brown broonie@linaro.org
Add basic CPU topology support to arm64, based on the existing pre-v8 code and some work done by Mark Hambleton. This patch does not implement any topology discovery support since that should be based on information from firmware, it merely implements the scaffolding for integration of topology support in the architecture.
The goal is to separate the architecture hookup for providing topology information from the DT parsing in order to ease review and avoid blocking the architecture code (which will be built on by other work) with the DT code review by providing something something simple and basic.
A following patch will implement support for parsing the DT topology bindings for ARM, similar patches will be needed for ACPI.
Signed-off-by: Mark Brown broonie@linaro.org --- arch/arm64/Kconfig | 24 +++++++++++ arch/arm64/include/asm/topology.h | 39 +++++++++++++++++ arch/arm64/kernel/Makefile | 1 + arch/arm64/kernel/smp.c | 12 ++++++ arch/arm64/kernel/topology.c | 91 +++++++++++++++++++++++++++++++++++++++ 5 files changed, 167 insertions(+) create mode 100644 arch/arm64/include/asm/topology.h create mode 100644 arch/arm64/kernel/topology.c
diff --git a/arch/arm64/Kconfig b/arch/arm64/Kconfig index 249acb9da4e3..a53514cdf39c 100644 --- a/arch/arm64/Kconfig +++ b/arch/arm64/Kconfig @@ -162,6 +162,30 @@ config SMP
If you don't know what to do here, say N.
+config ARM_CPU_TOPOLOGY + bool "Support CPU topology definition" + depends on SMP + default y + help + Support CPU topology definition, based on configuration + provided by the firmware. + +config SCHED_MC + bool "Multi-core scheduler support" + depends on ARM_CPU_TOPOLOGY + help + Multi-core scheduler support improves the CPU scheduler's decision + making when dealing with multi-core CPU chips at a cost of slightly + increased overhead in some places. If unsure say N here. + +config SCHED_SMT + bool "SMT scheduler support" + depends on ARM_CPU_TOPOLOGY + help + Improves the CPU scheduler's decision making when dealing with + MultiThreading at a cost of slightly increased overhead in some + places. If unsure say N here. + config NR_CPUS int "Maximum number of CPUs (2-32)" range 2 32 diff --git a/arch/arm64/include/asm/topology.h b/arch/arm64/include/asm/topology.h new file mode 100644 index 000000000000..58b8b84adcd2 --- /dev/null +++ b/arch/arm64/include/asm/topology.h @@ -0,0 +1,39 @@ +#ifndef _ASM_ARM_TOPOLOGY_H +#define _ASM_ARM_TOPOLOGY_H + +#ifdef CONFIG_ARM_CPU_TOPOLOGY + +#include <linux/cpumask.h> + +struct cputopo_arm { + int thread_id; + int core_id; + int socket_id; + cpumask_t thread_sibling; + cpumask_t core_sibling; +}; + +extern struct cputopo_arm cpu_topology[NR_CPUS]; + +#define topology_physical_package_id(cpu) (cpu_topology[cpu].socket_id) +#define topology_core_id(cpu) (cpu_topology[cpu].core_id) +#define topology_core_cpumask(cpu) (&cpu_topology[cpu].core_sibling) +#define topology_thread_cpumask(cpu) (&cpu_topology[cpu].thread_sibling) + +#define mc_capable() (cpu_topology[0].socket_id != -1) +#define smt_capable() (cpu_topology[0].thread_id != -1) + +void init_cpu_topology(void); +void store_cpu_topology(unsigned int cpuid); +const struct cpumask *cpu_coregroup_mask(int cpu); + +#else + +static inline void init_cpu_topology(void) { } +static inline void store_cpu_topology(unsigned int cpuid) { } + +#endif + +#include <asm-generic/topology.h> + +#endif /* _ASM_ARM_TOPOLOGY_H */ diff --git a/arch/arm64/kernel/Makefile b/arch/arm64/kernel/Makefile index 1cd339d5037b..b2fe6ba97080 100644 --- a/arch/arm64/kernel/Makefile +++ b/arch/arm64/kernel/Makefile @@ -19,6 +19,7 @@ arm64-obj-$(CONFIG_HW_PERF_EVENTS) += perf_event.o arm64-obj-$(CONFIG_HAVE_HW_BREAKPOINT)+= hw_breakpoint.o arm64-obj-$(CONFIG_EARLY_PRINTK) += early_printk.o arm64-obj-$(CONFIG_ARM64_CPU_SUSPEND) += sleep.o suspend.o +arm64-obj-$(CONFIG_ARM_CPU_TOPOLOGY) += topology.o
obj-y += $(arm64-obj-y) vdso/ obj-m += $(arm64-obj-m) diff --git a/arch/arm64/kernel/smp.c b/arch/arm64/kernel/smp.c index 1b7617ab499b..40e20efc13e6 100644 --- a/arch/arm64/kernel/smp.c +++ b/arch/arm64/kernel/smp.c @@ -114,6 +114,11 @@ int __cpu_up(unsigned int cpu, struct task_struct *idle) return ret; }
+static void __cpuinit smp_store_cpu_info(unsigned int cpuid) +{ + store_cpu_topology(cpuid); +} + /* * This is the secondary CPU boot entry. We're using this CPUs * idle thread stack, but a set of temporary page tables. @@ -152,6 +157,8 @@ asmlinkage void secondary_start_kernel(void) */ notify_cpu_starting(cpu);
+ smp_store_cpu_info(cpu); + /* * OK, now it's safe to let the boot CPU continue. Wait for * the CPU migration code to notice that the CPU is online @@ -391,6 +398,11 @@ void __init smp_prepare_cpus(unsigned int max_cpus) int err; unsigned int cpu, ncores = num_possible_cpus();
+ init_cpu_topology(); + + smp_store_cpu_info(smp_processor_id()); + + /* * are we trying to boot more cores than exist? */ diff --git a/arch/arm64/kernel/topology.c b/arch/arm64/kernel/topology.c new file mode 100644 index 000000000000..20eef01a4707 --- /dev/null +++ b/arch/arm64/kernel/topology.c @@ -0,0 +1,91 @@ +/* + * arch/arm64/kernel/topology.c + * + * Copyright (C) 2011,2013 Linaro Limited. + * + * Based on the arm32 version written by Vincent Guittot in turn based on + * arch/sh/kernel/topology.c + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + */ + +#include <linux/cpu.h> +#include <linux/cpumask.h> +#include <linux/init.h> +#include <linux/percpu.h> +#include <linux/node.h> +#include <linux/nodemask.h> +#include <linux/sched.h> + +#include <asm/topology.h> + +/* + * cpu topology table + */ +struct cputopo_arm cpu_topology[NR_CPUS]; +EXPORT_SYMBOL_GPL(cpu_topology); + +const struct cpumask *cpu_coregroup_mask(int cpu) +{ + return &cpu_topology[cpu].core_sibling; +} + +static void update_siblings_masks(unsigned int cpuid) +{ + struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; + int cpu; + + /* update core and thread sibling masks */ + for_each_possible_cpu(cpu) { + cpu_topo = &cpu_topology[cpu]; + + if (cpuid_topo->socket_id != cpu_topo->socket_id) + continue; + + cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); + if (cpu != cpuid) + cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); + + if (cpuid_topo->core_id != cpu_topo->core_id) + continue; + + cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); + if (cpu != cpuid) + cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); + } + smp_wmb(); +} + +void store_cpu_topology(unsigned int cpuid) +{ + struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid]; + + /* DT should have been parsed by the time we get here */ + if (cpuid_topo->core_id == -1) + pr_info("CPU%u: No topology information configured\n", cpuid); + else + update_siblings_masks(cpuid); +} + +/* + * init_cpu_topology is called at boot when only one cpu is running + * which prevent simultaneous write access to cpu_topology array + */ +void __init init_cpu_topology(void) +{ + unsigned int cpu; + + /* init core mask and power*/ + for_each_possible_cpu(cpu) { + struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]); + + cpu_topo->thread_id = -1; + cpu_topo->core_id = -1; + cpu_topo->socket_id = -1; + cpumask_clear(&cpu_topo->core_sibling); + cpumask_clear(&cpu_topo->thread_sibling); + } + smp_wmb(); +}
From: Mark Brown broonie@linaro.org
Add support for parsing the explicit topology bindings to discover the topology of the system.
Since it is not currently clear how to map multi-level clusters for the scheduler all leaf clusters are presented to the scheduler at the same level. This should be enough to provide good support for current systems.
Signed-off-by: Mark Brown broonie@linaro.org --- arch/arm64/kernel/topology.c | 150 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 150 insertions(+)
diff --git a/arch/arm64/kernel/topology.c b/arch/arm64/kernel/topology.c index 20eef01a4707..e77c6b0844be 100644 --- a/arch/arm64/kernel/topology.c +++ b/arch/arm64/kernel/topology.c @@ -17,10 +17,157 @@ #include <linux/percpu.h> #include <linux/node.h> #include <linux/nodemask.h> +#include <linux/of.h> #include <linux/sched.h> +#include <linux/slab.h>
#include <asm/topology.h>
+#ifdef CONFIG_OF +static int cluster_id; + +static int __init get_cpu_for_node(struct device_node *node) +{ + struct device_node *cpu_node; + int cpu; + + cpu_node = of_parse_phandle(node, "cpu", 0); + if (!cpu_node) { + pr_crit("%s: Unable to parse CPU phandle\n", node->full_name); + return -1; + } + + for_each_possible_cpu(cpu) { + if (of_get_cpu_node(cpu, NULL) == cpu_node) + return cpu; + } + + pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name); + return -1; +} + +static void __init parse_core(struct device_node *core, int core_id) +{ + char name[10]; + bool leaf = true; + int i, cpu; + struct device_node *t; + + i = 0; + do { + snprintf(name, sizeof(name), "thread%d", i); + t = of_get_child_by_name(core, name); + if (t) { + leaf = false; + cpu = get_cpu_for_node(t); + if (cpu >= 0) { + pr_info("CPU%d: socket %d core %d thread %d\n", + cpu, cluster_id, core_id, i); + cpu_topology[cpu].socket_id = cluster_id; + cpu_topology[cpu].core_id = core_id; + cpu_topology[cpu].thread_id = i; + } else { + pr_err("%s: Can't get CPU for thread\n", + t->full_name); + } + } + i++; + } while (t); + + cpu = get_cpu_for_node(core); + if (cpu >= 0) { + if (!leaf) { + pr_err("%s: Core has both threads and CPU\n", + core->full_name); + return; + } + + pr_info("CPU%d: socket %d core %d\n", + cpu, cluster_id, core_id); + cpu_topology[cpu].socket_id = cluster_id; + cpu_topology[cpu].core_id = core_id; + } else if (leaf) { + pr_err("%s: Can't get CPU for leaf core\n", core->full_name); + } +} + +static void __init parse_cluster(struct device_node *cluster, int depth) +{ + char name[10]; + bool leaf = true; + bool has_cores = false; + struct device_node *c; + int core_id = 0; + int i; + + /* + * First check for child clusters; we currently ignore any + * information about the nesting of clusters and present the + * scheduler with a flat list of them. + */ + i = 0; + do { + snprintf(name, sizeof(name), "cluster%d", i); + c = of_get_child_by_name(cluster, name); + if (c) { + parse_cluster(c, depth + 1); + leaf = false; + } + i++; + } while (c); + + /* Now check for cores */ + i = 0; + do { + snprintf(name, sizeof(name), "core%d", i); + c = of_get_child_by_name(cluster, name); + if (c) { + has_cores = true; + + if (depth == 0) + pr_err("%s: cpu-map children should be clusters\n", + c->full_name); + + if (leaf) + parse_core(c, core_id++); + else + pr_err("%s: Non-leaf cluster with core %s\n", + cluster->full_name, name); + } + i++; + } while (c); + + if (leaf && !has_cores) + pr_warn("%s: empty cluster\n", cluster->full_name); + + if (leaf) + cluster_id++; +} + +static void __init parse_dt_topology(void) +{ + struct device_node *cn; + + cn = of_find_node_by_path("/cpus"); + if (!cn) { + pr_err("No CPU information found in DT\n"); + return; + } + + /* + * If topology is provided as a cpu-map it is essentially a + * root cluster. + */ + cn = of_find_node_by_name(cn, "cpu-map"); + if (!cn) + return; + parse_cluster(cn, 0); +} + +#else +static inline void parse_dt_topology(void) {} +#endif + /* * cpu topology table */ @@ -87,5 +234,8 @@ void __init init_cpu_topology(void) cpumask_clear(&cpu_topo->core_sibling); cpumask_clear(&cpu_topo->thread_sibling); } + + parse_dt_topology(); + smp_wmb(); }
On Wed, Jan 08, 2014 at 07:12:08PM +0000, Mark Brown wrote:
From: Mark Brown broonie@linaro.org diff --git a/arch/arm64/kernel/topology.c b/arch/arm64/kernel/topology.c index 20eef01a4707..e77c6b0844be 100644 --- a/arch/arm64/kernel/topology.c +++ b/arch/arm64/kernel/topology.c @@ -17,10 +17,157 @@ #include <linux/percpu.h> #include <linux/node.h> #include <linux/nodemask.h> +#include <linux/of.h> #include <linux/sched.h> +#include <linux/slab.h>
It does not belong here either.
#include <asm/topology.h> +#ifdef CONFIG_OF +static int cluster_id;
This is __initdata. I think it is better to move it to parse_cluster and pass it to parse_core as a parameter instead of using a global.
+static int __init get_cpu_for_node(struct device_node *node) +{
- struct device_node *cpu_node;
- int cpu;
- cpu_node = of_parse_phandle(node, "cpu", 0);
- if (!cpu_node) {
pr_crit("%s: Unable to parse CPU phandle\n", node->full_name);
This messages is spit out anytime you try to grab a cpu phandle and it is not there. In particular, in parse_core if core is not a leaf but you still try to grab a cpu phandle this message is spit out and that's not nice at all. Either we remove the message or we do not check the phandle in core nodes that are not leaves.
return -1;
- }
- for_each_possible_cpu(cpu) {
if (of_get_cpu_node(cpu, NULL) == cpu_node)
return cpu;
- }
- pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
- return -1;
+}
+static void __init parse_core(struct device_node *core, int core_id) +{
- char name[10];
- bool leaf = true;
- int i, cpu;
- struct device_node *t;
- i = 0;
- do {
snprintf(name, sizeof(name), "thread%d", i);
t = of_get_child_by_name(core, name);
if (t) {
leaf = false;
cpu = get_cpu_for_node(t);
if (cpu >= 0) {
pr_info("CPU%d: socket %d core %d thread %d\n",
cpu, cluster_id, core_id, i);
Since all these variables are internal values that have no real meaning I am not sure it is useful to print them out. Probably better to print the resulting cpu masks on every cpu, problem is when to do that.
cpu_topology[cpu].socket_id = cluster_id;
cpu_topology[cpu].core_id = core_id;
cpu_topology[cpu].thread_id = i;
} else {
pr_err("%s: Can't get CPU for thread\n",
t->full_name);
}
}
i++;
- } while (t);
- cpu = get_cpu_for_node(core);
This is what I am referring too above. For core nodes containing threads a message is spit out and that must not be there. Either we avoid parsing core nodes that are not leaves or we change get_cpu_core_for_node.
Lorenzo
On Thu, Jan 09, 2014 at 12:50:52PM +0000, Lorenzo Pieralisi wrote:
On Wed, Jan 08, 2014 at 07:12:08PM +0000, Mark Brown wrote:
+#ifdef CONFIG_OF +static int cluster_id;
This is __initdata. I think it is better to move it to parse_cluster and pass it to parse_core as a parameter instead of using a global.
Should be __initdata, yes. I actually started using pointers but passing the pointer around just seemed more ugly, it made the code in the functions look more scary due to the dereferences.
- cpu_node = of_parse_phandle(node, "cpu", 0);
- if (!cpu_node) {
pr_crit("%s: Unable to parse CPU phandle\n", node->full_name);
This messages is spit out anytime you try to grab a cpu phandle and it is not there. In particular, in parse_core if core is not a leaf but you still try to grab a cpu phandle this message is spit out and that's not nice at all. Either we remove the message or we do not check the phandle in core nodes that are not leaves.
I'll just drop it.
cpu = get_cpu_for_node(t);
if (cpu >= 0) {
pr_info("CPU%d: socket %d core %d thread %d\n",
cpu, cluster_id, core_id, i);
Since all these variables are internal values that have no real meaning I am not sure it is useful to print them out. Probably better to print the resulting cpu masks on every cpu, problem is when to do that.
I found it was useful for getting a quick overview of the topology from the logs - the actual numbers don't matter but being able to see which cores are grouped together seemed useful. I'm not sure the masks would be an improvement for the human reader, I'd expect that presenting more decoded information would be more helpful.
From: Mark Brown broonie@linaro.org
In non-heterogeneous systems like big.LITTLE systems the scheduler will be able to make better use of the available cores if we provide power numbers to it indicating their relative performance. Do this by parsing the CPU nodes in the DT.
This code currently has no effect as no information on the relative performance of the cores is provided.
Signed-off-by: Mark Brown broonie@linaro.org --- arch/arm64/kernel/topology.c | 141 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 141 insertions(+)
diff --git a/arch/arm64/kernel/topology.c b/arch/arm64/kernel/topology.c index e77c6b0844be..e1751e0e6142 100644 --- a/arch/arm64/kernel/topology.c +++ b/arch/arm64/kernel/topology.c @@ -23,6 +23,29 @@
#include <asm/topology.h>
+/* + * cpu power table + * This per cpu data structure describes the relative capacity of each core. + * On a heteregenous system, cores don't have the same computation capacity + * and we reflect that difference in the cpu_power field so the scheduler can + * take this difference into account during load balance. A per cpu structure + * is preferred because each CPU updates its own cpu_power field during the + * load balance except for idle cores. One idle core is selected to run the + * rebalance_domains for all idle cores and the cpu_power can be updated + * during this sequence. + */ +static DEFINE_PER_CPU(unsigned long, cpu_scale); + +unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu) +{ + return per_cpu(cpu_scale, cpu); +} + +static void set_power_scale(unsigned int cpu, unsigned long power) +{ + per_cpu(cpu_scale, cpu) = power; +} + #ifdef CONFIG_OF static int cluster_id;
@@ -144,9 +167,49 @@ static void __init parse_cluster(struct device_node *cluster, int depth) cluster_id++; }
+struct cpu_efficiency { + const char *compatible; + unsigned long efficiency; +}; + +/* + * Table of relative efficiency of each processors + * The efficiency value must fit in 20bit and the final + * cpu_scale value must be in the range + * 0 < cpu_scale < 3*SCHED_POWER_SCALE/2 + * in order to return at most 1 when DIV_ROUND_CLOSEST + * is used to compute the capacity of a CPU. + * Processors that are not defined in the table, + * use the default SCHED_POWER_SCALE value for cpu_scale. + */ +static const struct cpu_efficiency table_efficiency[] = { + { NULL, }, +}; + +static unsigned long *__cpu_capacity; +#define cpu_capacity(cpu) __cpu_capacity[cpu] + +static unsigned long middle_capacity = 1; + +/* + * Iterate all CPUs' descriptor in DT and compute the efficiency + * (as per table_efficiency). Also calculate a middle efficiency + * as close as possible to (max{eff_i} - min{eff_i}) / 2 + * This is later used to scale the cpu_power field such that an + * 'average' CPU is of middle power. Also see the comments near + * table_efficiency[] and update_cpu_power(). + */ static void __init parse_dt_topology(void) { + const struct cpu_efficiency *cpu_eff; struct device_node *cn; + unsigned long min_capacity = ULONG_MAX; + unsigned long max_capacity = 0; + unsigned long capacity = 0; + int cpu; + + __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity), + GFP_NOWAIT);
cn = of_find_node_by_path("/cpus"); if (!cn) { @@ -162,10 +225,84 @@ static void __init parse_dt_topology(void) if (!cn) return; parse_cluster(cn, 0); + + for_each_possible_cpu(cpu) { + const u32 *rate; + int len; + + /* Too early to use cpu->of_node */ + cn = of_get_cpu_node(cpu, NULL); + if (!cn) { + pr_err("Missing device node for CPU %d\n", cpu); + continue; + } + + for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) + if (of_device_is_compatible(cn, cpu_eff->compatible)) + break; + + if (cpu_eff->compatible == NULL) { + pr_warn("%s: Unknown CPU type\n", cn->full_name); + continue; + } + + rate = of_get_property(cn, "clock-frequency", &len); + if (!rate || len != 4) { + pr_err("%s: Missing clock-frequency property\n", + cn->full_name); + continue; + } + + capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency; + + /* Save min capacity of the system */ + if (capacity < min_capacity) + min_capacity = capacity; + + /* Save max capacity of the system */ + if (capacity > max_capacity) + max_capacity = capacity; + + cpu_capacity(cpu) = capacity; + } + + /* If min and max capacities are equal we bypass the update of the + * cpu_scale because all CPUs have the same capacity. Otherwise, we + * compute a middle_capacity factor that will ensure that the capacity + * of an 'average' CPU of the system will be as close as possible to + * SCHED_POWER_SCALE, which is the default value, but with the + * constraint explained near table_efficiency[]. + */ + if (min_capacity == max_capacity) + return; + else if (4 * max_capacity < (3 * (max_capacity + min_capacity))) + middle_capacity = (min_capacity + max_capacity) + >> (SCHED_POWER_SHIFT+1); + else + middle_capacity = ((max_capacity / 3) + >> (SCHED_POWER_SHIFT-1)) + 1; + +} + +/* + * Look for a customed capacity of a CPU in the cpu_topo_data table during the + * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the + * function returns directly for SMP system. + */ +static void update_cpu_power(unsigned int cpu) +{ + if (!cpu_capacity(cpu)) + return; + + set_power_scale(cpu, cpu_capacity(cpu) / middle_capacity); + + pr_info("CPU%u: update cpu_power %lu\n", + cpu, arch_scale_freq_power(NULL, cpu)); }
#else static inline void parse_dt_topology(void) {} +static inline void update_cpu_power(unsigned int cpuid) {} #endif
/* @@ -214,6 +351,8 @@ void store_cpu_topology(unsigned int cpuid) pr_info("CPU%u: No topology information configured\n", cpuid); else update_siblings_masks(cpuid); + + update_cpu_power(cpuid); }
/* @@ -233,6 +372,8 @@ void __init init_cpu_topology(void) cpu_topo->socket_id = -1; cpumask_clear(&cpu_topo->core_sibling); cpumask_clear(&cpu_topo->thread_sibling); + + set_power_scale(cpu, SCHED_POWER_SCALE); }
parse_dt_topology();
Hi Mark.
On 08/01/2014, Mark Brown wrote:
From: Mark Brown broonie@linaro.org
In non-heterogeneous systems like big.LITTLE systems the scheduler will be
Minor nit: 'Heterogeneous systems' or 'non-homogeneous systems' would be more appropriate.
Robin
From: Mark Brown broonie@linaro.org
Provide performance numbers to the scheduler to help it fill the cores in the system on big.LITTLE systems. With the current scheduler this may perform poorly for applications that try to do OpenMP style work over all cores but should help for more common workloads.
The power numbers are the same as for ARMv7 since it seems that the expected differential between the big and little cores is very similar on both ARMv7 and ARMv8. These numbers are just an initial and basic approximation for use with the current scheduler, it is likely that both experience with silicon and ongoing work on improving the scheduler will lead to further tuning. In both ARMv7 and ARMv8 cases the numbers were based on the published DMIPS numbers.
Signed-off-by: Mark Brown broonie@linaro.org --- arch/arm64/kernel/topology.c | 2 ++ 1 file changed, 2 insertions(+)
diff --git a/arch/arm64/kernel/topology.c b/arch/arm64/kernel/topology.c index e1751e0e6142..ba1e7187f19b 100644 --- a/arch/arm64/kernel/topology.c +++ b/arch/arm64/kernel/topology.c @@ -183,6 +183,8 @@ struct cpu_efficiency { * use the default SCHED_POWER_SCALE value for cpu_scale. */ static const struct cpu_efficiency table_efficiency[] = { + { "arm,cortex-a57", 3891 }, + { "arm,cortex-a53", 2048 }, { NULL, }, };
On Wed, Jan 08, 2014 at 07:12:07PM +0000, Mark Brown wrote:
From: Mark Brown broonie@linaro.org
Add basic CPU topology support to arm64, based on the existing pre-v8 code and some work done by Mark Hambleton. This patch does not implement any topology discovery support since that should be based on information from firmware, it merely implements the scaffolding for integration of topology support in the architecture.
Mark, for future patches, could you please add a cover letter with a simple changelog and also add some versioning to the subject ([PATCH v*]). It's getting hard to follow which series addresses what comments, especially when you post more updates in the same day.
Thanks.
linaro-kernel@lists.linaro.org