This small series adds support for Transparent Huge Pages and hugetlbfs pages for KVM on the arm and arm64 architectures.
Measurements have shown that using huge pages in for stage-2 mappings provides up to more than 15% performance increase for some workloads.
The patch series applies to kvm/next, but depends on the patch sent earlier:
"ARM: KVM: Fix unaligned unmap_range leak"
Christoffer Dall (3): KVM: Move gfn_to_index to x86 specific code KVM: ARM: Get rid of KVM_HPAGE_XXX defines KVM: ARM: Transparent huge pages and hugetlbfs support
arch/arm/include/asm/kvm_host.h | 5 - arch/arm/include/asm/kvm_mmu.h | 17 +++- arch/arm/kvm/mmu.c | 200 ++++++++++++++++++++++++++++++++------ arch/arm64/include/asm/kvm_mmu.h | 12 ++- arch/x86/include/asm/kvm_host.h | 7 ++ include/linux/kvm_host.h | 7 -- 6 files changed, 201 insertions(+), 47 deletions(-)
The gfn_to_index function relies on huge page defines which either may not make sense on systems that don't support huge pages or are defined in an unconvenient way for other architectures. Since this is x86-specific, move the function to arch/x86/include/asm/kvm_host.h.
Signed-off-by: Christoffer Dall christoffer.dall@linaro.org --- arch/x86/include/asm/kvm_host.h | 7 +++++++ include/linux/kvm_host.h | 7 ------- 2 files changed, 7 insertions(+), 7 deletions(-)
diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h index f87f7fc..fca7f2e 100644 --- a/arch/x86/include/asm/kvm_host.h +++ b/arch/x86/include/asm/kvm_host.h @@ -79,6 +79,13 @@ #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
+static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level) +{ + /* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */ + return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - + (base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); +} + #define SELECTOR_TI_MASK (1 << 2) #define SELECTOR_RPL_MASK 0x03
diff --git a/include/linux/kvm_host.h b/include/linux/kvm_host.h index a63d83e..635e098 100644 --- a/include/linux/kvm_host.h +++ b/include/linux/kvm_host.h @@ -828,13 +828,6 @@ static inline int memslot_id(struct kvm *kvm, gfn_t gfn) return gfn_to_memslot(kvm, gfn)->id; }
-static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level) -{ - /* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */ - return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - - (base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); -} - static inline gfn_t hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) {
The KVM_HPAGE_DEFINES are a little artificial on ARM, since the huge page size is statically defined at compile time and there is only a single huge page size.
Now when the main kvm code relying on these defines has been moved to the x86 specific part of the world, we can get rid of these.
Signed-off-by: Christoffer Dall christoffer.dall@linaro.org --- arch/arm/include/asm/kvm_host.h | 5 ----- 1 file changed, 5 deletions(-)
diff --git a/arch/arm/include/asm/kvm_host.h b/arch/arm/include/asm/kvm_host.h index 7d22517..e45a74b 100644 --- a/arch/arm/include/asm/kvm_host.h +++ b/arch/arm/include/asm/kvm_host.h @@ -38,11 +38,6 @@
#define KVM_VCPU_MAX_FEATURES 1
-/* We don't currently support large pages. */ -#define KVM_HPAGE_GFN_SHIFT(x) 0 -#define KVM_NR_PAGE_SIZES 1 -#define KVM_PAGES_PER_HPAGE(x) (1UL<<31) - #include <kvm/arm_vgic.h>
struct kvm_vcpu;
From: Christoffer Dall cdall@cs.columbia.edu
Support transparent huge pages in KVM/ARM 32-bit and 64-bit. The whole transparent_hugepage_adjust stuff is far from pretty, but this is how it's solved on x86 so we duplicate their logic. This should be shared across architectures if possible (like many other things), but can always be changed down the road.
The pud_huge checking on the unmap path may feel a bit silly as the pud_huge check is always defined to false, but the compiler should be smart about this.
Signed-off-by: Christoffer Dall christoffer.dall@linaro.org --- arch/arm/include/asm/kvm_mmu.h | 17 +++- arch/arm/kvm/mmu.c | 200 ++++++++++++++++++++++++++++++++------ arch/arm64/include/asm/kvm_mmu.h | 12 ++- 3 files changed, 194 insertions(+), 35 deletions(-)
diff --git a/arch/arm/include/asm/kvm_mmu.h b/arch/arm/include/asm/kvm_mmu.h index 472ac70..ff3ff67 100644 --- a/arch/arm/include/asm/kvm_mmu.h +++ b/arch/arm/include/asm/kvm_mmu.h @@ -62,6 +62,12 @@ phys_addr_t kvm_get_idmap_vector(void); int kvm_mmu_init(void); void kvm_clear_hyp_idmap(void);
+static inline void kvm_set_pmd(pmd_t *pmd, pmd_t new_pmd) +{ + *pmd = new_pmd; + flush_pmd_entry(pmd); +} + static inline void kvm_set_pte(pte_t *pte, pte_t new_pte) { pte_val(*pte) = new_pte; @@ -103,9 +109,15 @@ static inline void kvm_set_s2pte_writable(pte_t *pte) pte_val(*pte) |= L_PTE_S2_RDWR; }
+static inline void kvm_set_s2pmd_writable(pmd_t *pmd) +{ + pmd_val(*pmd) |= L_PTE_S2_RDWR; +} + struct kvm;
-static inline void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn) +static inline void coherent_icache_guest_page(struct kvm *kvm, hva_t hva, + unsigned long size) { /* * If we are going to insert an instruction page and the icache is @@ -120,8 +132,7 @@ static inline void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn) * need any kind of flushing (DDI 0406C.b - Page B3-1392). */ if (icache_is_pipt()) { - unsigned long hva = gfn_to_hva(kvm, gfn); - __cpuc_coherent_user_range(hva, hva + PAGE_SIZE); + __cpuc_coherent_user_range(hva, hva + size); } else if (!icache_is_vivt_asid_tagged()) { /* any kind of VIPT cache */ __flush_icache_all(); diff --git a/arch/arm/kvm/mmu.c b/arch/arm/kvm/mmu.c index 0988d9e..26ced77 100644 --- a/arch/arm/kvm/mmu.c +++ b/arch/arm/kvm/mmu.c @@ -19,6 +19,7 @@ #include <linux/mman.h> #include <linux/kvm_host.h> #include <linux/io.h> +#include <linux/hugetlb.h> #include <trace/events/kvm.h> #include <asm/pgalloc.h> #include <asm/cacheflush.h> @@ -41,6 +42,8 @@ static unsigned long hyp_idmap_start; static unsigned long hyp_idmap_end; static phys_addr_t hyp_idmap_vector;
+#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x)) + static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa) { /* @@ -93,19 +96,27 @@ static bool page_empty(void *ptr)
static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr) { - pmd_t *pmd_table = pmd_offset(pud, 0); - pud_clear(pud); - kvm_tlb_flush_vmid_ipa(kvm, addr); - pmd_free(NULL, pmd_table); + if (pud_huge(*pud)) { + pud_clear(pud); + } else { + pmd_t *pmd_table = pmd_offset(pud, 0); + pud_clear(pud); + kvm_tlb_flush_vmid_ipa(kvm, addr); + pmd_free(NULL, pmd_table); + } put_page(virt_to_page(pud)); }
static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr) { - pte_t *pte_table = pte_offset_kernel(pmd, 0); - pmd_clear(pmd); - kvm_tlb_flush_vmid_ipa(kvm, addr); - pte_free_kernel(NULL, pte_table); + if (kvm_pmd_huge(*pmd)) { + pmd_clear(pmd); + } else { + pte_t *pte_table = pte_offset_kernel(pmd, 0); + pmd_clear(pmd); + kvm_tlb_flush_vmid_ipa(kvm, addr); + pte_free_kernel(NULL, pte_table); + } put_page(virt_to_page(pmd)); }
@@ -136,12 +147,37 @@ static void unmap_range(struct kvm *kvm, pgd_t *pgdp, continue; }
+ if (pud_huge(*pud)) { + /* + * If we are dealing with a huge pud, just clear it and + * move on. + */ + clear_pud_entry(kvm, pud, addr); + addr = pud_addr_end(addr, end); + continue; + } + pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) { addr = pmd_addr_end(addr, end); continue; }
+ if (kvm_pmd_huge(*pmd)) { + /* + * If we are dealing with a huge pmd, just clear it and + * walk back up the ladder. + */ + clear_pmd_entry(kvm, pmd, addr); + next = pmd_addr_end(addr, end); + if (page_empty(pmd) && !page_empty(pud)) { + clear_pud_entry(kvm, pud, addr); + next = pud_addr_end(addr, end); + } + addr = next; + continue; + } + pte = pte_offset_kernel(pmd, addr); clear_pte_entry(kvm, pte, addr); next = addr + PAGE_SIZE; @@ -420,6 +456,46 @@ void kvm_free_stage2_pgd(struct kvm *kvm) kvm->arch.pgd = NULL; }
+/* Set a huge page pmd entry */ +static int stage2_set_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, + phys_addr_t addr, const pmd_t *new_pmd) +{ + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd, old_pmd; + + /* Create stage-2 page table mapping - Level 1 */ + pgd = kvm->arch.pgd + pgd_index(addr); + pud = pud_offset(pgd, addr); + if (pud_none(*pud)) { + if (!cache) + return 0; /* ignore calls from kvm_set_spte_hva */ + pmd = mmu_memory_cache_alloc(cache); + pud_populate(NULL, pud, pmd); + get_page(virt_to_page(pud)); + } + + pmd = pmd_offset(pud, addr); + + /* + * Mapping in huge pages should only happen through a fault. If a + * page is merged into a transparent huge page, the individual + * subpages of that huge page should be unmapped through MMU + * notifiers before we get here. + * + * Merging of CompoundPages is not supported; they should become + * splitting first, unmapped, merged, and mapped back in on-demand. + */ + VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd)); + + old_pmd = *pmd; + kvm_set_pmd(pmd, *new_pmd); + if (pmd_present(old_pmd)) + kvm_tlb_flush_vmid_ipa(kvm, addr); + else + get_page(virt_to_page(pmd)); + return 0; +}
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, phys_addr_t addr, const pte_t *new_pte, bool iomap) @@ -442,7 +518,7 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
pmd = pmd_offset(pud, addr);
- /* Create 2nd stage page table mapping - Level 2 */ + /* Create 2nd stage page mappings - Level 2 */ if (pmd_none(*pmd)) { if (!cache) return 0; /* ignore calls from kvm_set_spte_hva */ @@ -508,16 +584,53 @@ out: return ret; }
+static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap) +{ + pfn_t pfn = *pfnp; + gfn_t gfn = *ipap >> PAGE_SHIFT; + + if (PageTransCompound(pfn_to_page(pfn))) { + unsigned long mask; + /* + * mmu_notifier_retry was successful and we hold the + * mmu_lock here, so the pmd can't become splitting + * from under us, and in turn + * __split_huge_page_refcount() can't run from under + * us and we can safely transfer the refcount from + * PG_tail to PG_head as we switch the pfn from tail to + * head. + */ + mask = (PMD_SIZE / PAGE_SIZE) - 1; + VM_BUG_ON((gfn & mask) != (pfn & mask)); + if (pfn & mask) { + gfn &= ~mask; + *ipap &= ~(PMD_SIZE - 1); + kvm_release_pfn_clean(pfn); + pfn &= ~mask; + kvm_get_pfn(pfn); + *pfnp = pfn; + } + + return true; + } + + return false; +} + static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, - gfn_t gfn, struct kvm_memory_slot *memslot, + struct kvm_memory_slot *memslot, unsigned long fault_status) { - pte_t new_pte; - pfn_t pfn; int ret; - bool write_fault, writable; + bool write_fault, writable, hugetlb = false, force_pte = false; unsigned long mmu_seq; + gfn_t gfn = fault_ipa >> PAGE_SHIFT; + unsigned long hva = gfn_to_hva(vcpu->kvm, gfn); + struct kvm *kvm = vcpu->kvm; struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; + struct vm_area_struct *vma; + pfn_t pfn; + unsigned long psize;
write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu)); if (fault_status == FSC_PERM && !write_fault) { @@ -525,6 +638,27 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, return -EFAULT; }
+ /* Let's check if we will get back a huge page */ + down_read(¤t->mm->mmap_sem); + vma = find_vma_intersection(current->mm, hva, hva + 1); + if (is_vm_hugetlb_page(vma)) { + hugetlb = true; + hva &= PMD_MASK; + gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT; + psize = PMD_SIZE; + } else { + psize = PAGE_SIZE; + if (vma->vm_start & ~PMD_MASK) + force_pte = true; + } + up_read(¤t->mm->mmap_sem); + + pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable); + if (is_error_pfn(pfn)) + return -EFAULT; + + coherent_icache_guest_page(kvm, hva, psize); + /* We need minimum second+third level pages */ ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS); if (ret) @@ -542,26 +676,34 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, */ smp_rmb();
- pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable); - if (is_error_pfn(pfn)) - return -EFAULT; - - new_pte = pfn_pte(pfn, PAGE_S2); - coherent_icache_guest_page(vcpu->kvm, gfn); - - spin_lock(&vcpu->kvm->mmu_lock); - if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) + spin_lock(&kvm->mmu_lock); + if (mmu_notifier_retry(kvm, mmu_seq)) goto out_unlock; - if (writable) { - kvm_set_s2pte_writable(&new_pte); - kvm_set_pfn_dirty(pfn); + if (!hugetlb && !force_pte) + hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa); + + if (hugetlb) { + pmd_t new_pmd = pfn_pmd(pfn, PAGE_S2); + new_pmd = pmd_mkhuge(new_pmd); + if (writable) { + kvm_set_s2pmd_writable(&new_pmd); + kvm_set_pfn_dirty(pfn); + } + ret = stage2_set_pmd(kvm, memcache, fault_ipa, &new_pmd); + } else { + pte_t new_pte = pfn_pte(pfn, PAGE_S2); + if (writable) { + kvm_set_s2pte_writable(&new_pte); + kvm_set_pfn_dirty(pfn); + } + ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, false); } - stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false); +
out_unlock: - spin_unlock(&vcpu->kvm->mmu_lock); + spin_unlock(&kvm->mmu_lock); kvm_release_pfn_clean(pfn); - return 0; + return ret; }
/** @@ -630,7 +772,7 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
memslot = gfn_to_memslot(vcpu->kvm, gfn);
- ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status); + ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status); if (ret == 0) ret = 1; out_unlock: diff --git a/arch/arm64/include/asm/kvm_mmu.h b/arch/arm64/include/asm/kvm_mmu.h index efe609c..e7f3852 100644 --- a/arch/arm64/include/asm/kvm_mmu.h +++ b/arch/arm64/include/asm/kvm_mmu.h @@ -91,6 +91,7 @@ int kvm_mmu_init(void); void kvm_clear_hyp_idmap(void);
#define kvm_set_pte(ptep, pte) set_pte(ptep, pte) +#define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
static inline bool kvm_is_write_fault(unsigned long esr) { @@ -116,13 +117,18 @@ static inline void kvm_set_s2pte_writable(pte_t *pte) pte_val(*pte) |= PTE_S2_RDWR; }
+static inline void kvm_set_s2pmd_writable(pmd_t *pmd) +{ + pmd_val(*pmd) |= PTE_S2_RDWR; +} + struct kvm;
-static inline void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn) +static inline void coherent_icache_guest_page(struct kvm *kvm, hva_t hva, + unsigned long size) { if (!icache_is_aliasing()) { /* PIPT */ - unsigned long hva = gfn_to_hva(kvm, gfn); - flush_icache_range(hva, hva + PAGE_SIZE); + flush_icache_range(hva, hva + size); } else if (!icache_is_aivivt()) { /* non ASID-tagged VIVT */ /* any kind of VIPT cache */ __flush_icache_all();
Hi Christoffer,
Finally taking some time to review this patch. Sorry for the delay...
On 09/08/13 05:07, Christoffer Dall wrote:
From: Christoffer Dall cdall@cs.columbia.edu
Support transparent huge pages in KVM/ARM 32-bit and 64-bit. The whole transparent_hugepage_adjust stuff is far from pretty, but this is how it's solved on x86 so we duplicate their logic. This should be shared across architectures if possible (like many other things), but can always be changed down the road.
The pud_huge checking on the unmap path may feel a bit silly as the pud_huge check is always defined to false, but the compiler should be smart about this.
Signed-off-by: Christoffer Dall christoffer.dall@linaro.org
arch/arm/include/asm/kvm_mmu.h | 17 +++- arch/arm/kvm/mmu.c | 200 ++++++++++++++++++++++++++++++++------ arch/arm64/include/asm/kvm_mmu.h | 12 ++- 3 files changed, 194 insertions(+), 35 deletions(-)
diff --git a/arch/arm/include/asm/kvm_mmu.h b/arch/arm/include/asm/kvm_mmu.h index 472ac70..ff3ff67 100644 --- a/arch/arm/include/asm/kvm_mmu.h +++ b/arch/arm/include/asm/kvm_mmu.h @@ -62,6 +62,12 @@ phys_addr_t kvm_get_idmap_vector(void); int kvm_mmu_init(void); void kvm_clear_hyp_idmap(void);
+static inline void kvm_set_pmd(pmd_t *pmd, pmd_t new_pmd) +{
*pmd = new_pmd;
flush_pmd_entry(pmd);
+}
static inline void kvm_set_pte(pte_t *pte, pte_t new_pte) { pte_val(*pte) = new_pte; @@ -103,9 +109,15 @@ static inline void kvm_set_s2pte_writable(pte_t *pte) pte_val(*pte) |= L_PTE_S2_RDWR; }
+static inline void kvm_set_s2pmd_writable(pmd_t *pmd) +{
pmd_val(*pmd) |= L_PTE_S2_RDWR;
+}
struct kvm;
-static inline void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn) +static inline void coherent_icache_guest_page(struct kvm *kvm, hva_t hva,
unsigned long size)
{ /* * If we are going to insert an instruction page and the icache is @@ -120,8 +132,7 @@ static inline void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn) * need any kind of flushing (DDI 0406C.b - Page B3-1392). */ if (icache_is_pipt()) {
unsigned long hva = gfn_to_hva(kvm, gfn);
__cpuc_coherent_user_range(hva, hva + PAGE_SIZE);
__cpuc_coherent_user_range(hva, hva + size); } else if (!icache_is_vivt_asid_tagged()) { /* any kind of VIPT cache */ __flush_icache_all();
diff --git a/arch/arm/kvm/mmu.c b/arch/arm/kvm/mmu.c index 0988d9e..26ced77 100644 --- a/arch/arm/kvm/mmu.c +++ b/arch/arm/kvm/mmu.c @@ -19,6 +19,7 @@ #include <linux/mman.h> #include <linux/kvm_host.h> #include <linux/io.h> +#include <linux/hugetlb.h> #include <trace/events/kvm.h> #include <asm/pgalloc.h> #include <asm/cacheflush.h> @@ -41,6 +42,8 @@ static unsigned long hyp_idmap_start; static unsigned long hyp_idmap_end; static phys_addr_t hyp_idmap_vector;
+#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa) { /* @@ -93,19 +96,27 @@ static bool page_empty(void *ptr)
static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr) {
pmd_t *pmd_table = pmd_offset(pud, 0);
pud_clear(pud);
kvm_tlb_flush_vmid_ipa(kvm, addr);
pmd_free(NULL, pmd_table);
if (pud_huge(*pud)) {
pud_clear(pud);
} else {
pmd_t *pmd_table = pmd_offset(pud, 0);
pud_clear(pud);
kvm_tlb_flush_vmid_ipa(kvm, addr);
pmd_free(NULL, pmd_table);
}
Why don't we have any TLB invalidation on the huge path?
put_page(virt_to_page(pud));
}
static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr) {
pte_t *pte_table = pte_offset_kernel(pmd, 0);
pmd_clear(pmd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
pte_free_kernel(NULL, pte_table);
if (kvm_pmd_huge(*pmd)) {
pmd_clear(pmd);
} else {
pte_t *pte_table = pte_offset_kernel(pmd, 0);
pmd_clear(pmd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
pte_free_kernel(NULL, pte_table);
}
Same here.
put_page(virt_to_page(pmd));
}
@@ -136,12 +147,37 @@ static void unmap_range(struct kvm *kvm, pgd_t *pgdp, continue; }
if (pud_huge(*pud)) {
/*
* If we are dealing with a huge pud, just clear it and
* move on.
*/
clear_pud_entry(kvm, pud, addr);
addr = pud_addr_end(addr, end);
continue;
}
pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) { addr = pmd_addr_end(addr, end); continue; }
if (kvm_pmd_huge(*pmd)) {
/*
* If we are dealing with a huge pmd, just clear it and
* walk back up the ladder.
*/
clear_pmd_entry(kvm, pmd, addr);
next = pmd_addr_end(addr, end);
if (page_empty(pmd) && !page_empty(pud)) {
clear_pud_entry(kvm, pud, addr);
next = pud_addr_end(addr, end);
}
addr = next;
continue;
}
Looks like we already have the exact same sequence a few lines below. Surely we can factor it out.
pte = pte_offset_kernel(pmd, addr); clear_pte_entry(kvm, pte, addr); next = addr + PAGE_SIZE;
@@ -420,6 +456,46 @@ void kvm_free_stage2_pgd(struct kvm *kvm) kvm->arch.pgd = NULL; }
+/* Set a huge page pmd entry */
Is it only for huge PMDs? Or can we try to share that code with what is in stage2_set_pte?
+static int stage2_set_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
phys_addr_t addr, const pmd_t *new_pmd)
+{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd, old_pmd;
/* Create stage-2 page table mapping - Level 1 */
pgd = kvm->arch.pgd + pgd_index(addr);
pud = pud_offset(pgd, addr);
if (pud_none(*pud)) {
if (!cache)
return 0; /* ignore calls from kvm_set_spte_hva */
Do we still need this?
pmd = mmu_memory_cache_alloc(cache);
pud_populate(NULL, pud, pmd);
get_page(virt_to_page(pud));
}
pmd = pmd_offset(pud, addr);
/*
* Mapping in huge pages should only happen through a fault. If a
* page is merged into a transparent huge page, the individual
* subpages of that huge page should be unmapped through MMU
* notifiers before we get here.
*
* Merging of CompoundPages is not supported; they should become
* splitting first, unmapped, merged, and mapped back in on-demand.
*/
VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
old_pmd = *pmd;
kvm_set_pmd(pmd, *new_pmd);
if (pmd_present(old_pmd))
kvm_tlb_flush_vmid_ipa(kvm, addr);
else
get_page(virt_to_page(pmd));
return 0;
+}
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, phys_addr_t addr, const pte_t *new_pte, bool iomap) @@ -442,7 +518,7 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
pmd = pmd_offset(pud, addr);
/* Create 2nd stage page table mapping - Level 2 */
/* Create 2nd stage page mappings - Level 2 */ if (pmd_none(*pmd)) { if (!cache) return 0; /* ignore calls from kvm_set_spte_hva */
@@ -508,16 +584,53 @@ out: return ret; }
+static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap) +{
pfn_t pfn = *pfnp;
gfn_t gfn = *ipap >> PAGE_SHIFT;
if (PageTransCompound(pfn_to_page(pfn))) {
unsigned long mask;
/*
* mmu_notifier_retry was successful and we hold the
* mmu_lock here, so the pmd can't become splitting
* from under us, and in turn
* __split_huge_page_refcount() can't run from under
* us and we can safely transfer the refcount from
* PG_tail to PG_head as we switch the pfn from tail to
* head.
*/
-ECANTPARSE. Well, I sort of can, but this deserves a clearer explanation.
mask = (PMD_SIZE / PAGE_SIZE) - 1;
mask = PTRS_PER_PMD -1;
VM_BUG_ON((gfn & mask) != (pfn & mask));
if (pfn & mask) {
gfn &= ~mask;
This doesn't seem to be used later on.
*ipap &= ~(PMD_SIZE - 1);
*ipap &= ~PMD_MASK;
kvm_release_pfn_clean(pfn);
pfn &= ~mask;
kvm_get_pfn(pfn);
*pfnp = pfn;
}
return true;
}
return false;
+}
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
gfn_t gfn, struct kvm_memory_slot *memslot,
struct kvm_memory_slot *memslot, unsigned long fault_status)
{
pte_t new_pte;
pfn_t pfn; int ret;
bool write_fault, writable;
bool write_fault, writable, hugetlb = false, force_pte = false; unsigned long mmu_seq;
gfn_t gfn = fault_ipa >> PAGE_SHIFT;
unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
struct kvm *kvm = vcpu->kvm; struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
struct vm_area_struct *vma;
pfn_t pfn;
unsigned long psize; write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu)); if (fault_status == FSC_PERM && !write_fault) {
@@ -525,6 +638,27 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, return -EFAULT; }
/* Let's check if we will get back a huge page */
down_read(¤t->mm->mmap_sem);
vma = find_vma_intersection(current->mm, hva, hva + 1);
if (is_vm_hugetlb_page(vma)) {
hugetlb = true;
hva &= PMD_MASK;
gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
psize = PMD_SIZE;
} else {
psize = PAGE_SIZE;
if (vma->vm_start & ~PMD_MASK)
force_pte = true;
}
up_read(¤t->mm->mmap_sem);
pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
if (is_error_pfn(pfn))
return -EFAULT;
How does this work with respect to the comment that talks about reading mmu_seq before calling gfp_to_pfn_prot? Either the comment is wrong, or we read this too early.
coherent_icache_guest_page(kvm, hva, psize);
/* We need minimum second+third level pages */ ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS); if (ret)
@@ -542,26 +676,34 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, */ smp_rmb();
pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
if (is_error_pfn(pfn))
return -EFAULT;
new_pte = pfn_pte(pfn, PAGE_S2);
coherent_icache_guest_page(vcpu->kvm, gfn);
spin_lock(&vcpu->kvm->mmu_lock);
if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
spin_lock(&kvm->mmu_lock);
if (mmu_notifier_retry(kvm, mmu_seq)) goto out_unlock;
if (writable) {
kvm_set_s2pte_writable(&new_pte);
kvm_set_pfn_dirty(pfn);
if (!hugetlb && !force_pte)
hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
How do we ensure that there is no race between this pte being promoted to a pmd and another page allocation in the same pmd somewhere else in the system? We only hold the kvm lock here, so there must be some extra implicit guarantee somewhere...
if (hugetlb) {
pmd_t new_pmd = pfn_pmd(pfn, PAGE_S2);
new_pmd = pmd_mkhuge(new_pmd);
if (writable) {
kvm_set_s2pmd_writable(&new_pmd);
kvm_set_pfn_dirty(pfn);
}
ret = stage2_set_pmd(kvm, memcache, fault_ipa, &new_pmd);
} else {
pte_t new_pte = pfn_pte(pfn, PAGE_S2);
if (writable) {
kvm_set_s2pte_writable(&new_pte);
kvm_set_pfn_dirty(pfn);
}
ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, false); }
stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false);
out_unlock:
spin_unlock(&vcpu->kvm->mmu_lock);
spin_unlock(&kvm->mmu_lock); kvm_release_pfn_clean(pfn);
return 0;
return ret;
}
/** @@ -630,7 +772,7 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
memslot = gfn_to_memslot(vcpu->kvm, gfn);
ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status);
ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status); if (ret == 0) ret = 1;
out_unlock: diff --git a/arch/arm64/include/asm/kvm_mmu.h b/arch/arm64/include/asm/kvm_mmu.h index efe609c..e7f3852 100644 --- a/arch/arm64/include/asm/kvm_mmu.h +++ b/arch/arm64/include/asm/kvm_mmu.h @@ -91,6 +91,7 @@ int kvm_mmu_init(void); void kvm_clear_hyp_idmap(void);
#define kvm_set_pte(ptep, pte) set_pte(ptep, pte) +#define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
static inline bool kvm_is_write_fault(unsigned long esr) { @@ -116,13 +117,18 @@ static inline void kvm_set_s2pte_writable(pte_t *pte) pte_val(*pte) |= PTE_S2_RDWR; }
+static inline void kvm_set_s2pmd_writable(pmd_t *pmd) +{
pmd_val(*pmd) |= PTE_S2_RDWR;
+}
struct kvm;
-static inline void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn) +static inline void coherent_icache_guest_page(struct kvm *kvm, hva_t hva,
unsigned long size)
{ if (!icache_is_aliasing()) { /* PIPT */
unsigned long hva = gfn_to_hva(kvm, gfn);
flush_icache_range(hva, hva + PAGE_SIZE);
flush_icache_range(hva, hva + size); } else if (!icache_is_aivivt()) { /* non ASID-tagged VIVT */ /* any kind of VIPT cache */ __flush_icache_all();
As a general comment about this patch, I think having both transparent pages *and* hugetlbfs support in the same patch makes it fairly hard to read.
I understand that is is actually convenient as most of the code is shared, but I think it would make it easier to read if the patch was split in two: first the basic hugetlb support, and then the THP madness.
What do you think?
Thanks,
M.
On 23/09/13 11:11, Marc Zyngier wrote:
Hi Christoffer,
Finally taking some time to review this patch. Sorry for the delay...
On 09/08/13 05:07, Christoffer Dall wrote:
From: Christoffer Dall cdall@cs.columbia.edu
Support transparent huge pages in KVM/ARM 32-bit and 64-bit. The whole transparent_hugepage_adjust stuff is far from pretty, but this is how it's solved on x86 so we duplicate their logic. This should be shared across architectures if possible (like many other things), but can always be changed down the road.
The pud_huge checking on the unmap path may feel a bit silly as the pud_huge check is always defined to false, but the compiler should be smart about this.
Signed-off-by: Christoffer Dall christoffer.dall@linaro.org
arch/arm/include/asm/kvm_mmu.h | 17 +++- arch/arm/kvm/mmu.c | 200 ++++++++++++++++++++++++++++++++------ arch/arm64/include/asm/kvm_mmu.h | 12 ++- 3 files changed, 194 insertions(+), 35 deletions(-)
diff --git a/arch/arm/include/asm/kvm_mmu.h b/arch/arm/include/asm/kvm_mmu.h index 472ac70..ff3ff67 100644 --- a/arch/arm/include/asm/kvm_mmu.h +++ b/arch/arm/include/asm/kvm_mmu.h @@ -62,6 +62,12 @@ phys_addr_t kvm_get_idmap_vector(void); int kvm_mmu_init(void); void kvm_clear_hyp_idmap(void);
+static inline void kvm_set_pmd(pmd_t *pmd, pmd_t new_pmd) +{
*pmd = new_pmd;
flush_pmd_entry(pmd);
+}
static inline void kvm_set_pte(pte_t *pte, pte_t new_pte) { pte_val(*pte) = new_pte; @@ -103,9 +109,15 @@ static inline void kvm_set_s2pte_writable(pte_t *pte) pte_val(*pte) |= L_PTE_S2_RDWR; }
+static inline void kvm_set_s2pmd_writable(pmd_t *pmd) +{
pmd_val(*pmd) |= L_PTE_S2_RDWR;
+}
struct kvm;
-static inline void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn) +static inline void coherent_icache_guest_page(struct kvm *kvm, hva_t hva,
unsigned long size)
{ /* * If we are going to insert an instruction page and the icache is @@ -120,8 +132,7 @@ static inline void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn) * need any kind of flushing (DDI 0406C.b - Page B3-1392). */ if (icache_is_pipt()) {
unsigned long hva = gfn_to_hva(kvm, gfn);
__cpuc_coherent_user_range(hva, hva + PAGE_SIZE);
__cpuc_coherent_user_range(hva, hva + size); } else if (!icache_is_vivt_asid_tagged()) { /* any kind of VIPT cache */ __flush_icache_all();
diff --git a/arch/arm/kvm/mmu.c b/arch/arm/kvm/mmu.c index 0988d9e..26ced77 100644 --- a/arch/arm/kvm/mmu.c +++ b/arch/arm/kvm/mmu.c @@ -19,6 +19,7 @@ #include <linux/mman.h> #include <linux/kvm_host.h> #include <linux/io.h> +#include <linux/hugetlb.h> #include <trace/events/kvm.h> #include <asm/pgalloc.h> #include <asm/cacheflush.h> @@ -41,6 +42,8 @@ static unsigned long hyp_idmap_start; static unsigned long hyp_idmap_end; static phys_addr_t hyp_idmap_vector;
+#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
Also, have a look at Steve's latest patch: http://lists.infradead.org/pipermail/linux-arm-kernel/2013-September/199812....
He has the exact same define, so there's room for consolidation there as well. Not a big issue though, and we can keep that for a later cleanup.
Cheers,
M.
On Mon, Sep 23, 2013 at 11:11:07AM +0100, Marc Zyngier wrote:
Hi Christoffer,
Finally taking some time to review this patch. Sorry for the delay...
On 09/08/13 05:07, Christoffer Dall wrote:
From: Christoffer Dall cdall@cs.columbia.edu
[ snip ]
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
gfn_t gfn, struct kvm_memory_slot *memslot,
struct kvm_memory_slot *memslot, unsigned long fault_status)
{
pte_t new_pte;
pfn_t pfn; int ret;
bool write_fault, writable;
bool write_fault, writable, hugetlb = false, force_pte = false; unsigned long mmu_seq;
gfn_t gfn = fault_ipa >> PAGE_SHIFT;
unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
struct kvm *kvm = vcpu->kvm; struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
struct vm_area_struct *vma;
pfn_t pfn;
unsigned long psize; write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu)); if (fault_status == FSC_PERM && !write_fault) {
@@ -525,6 +638,27 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, return -EFAULT; }
/* Let's check if we will get back a huge page */
down_read(¤t->mm->mmap_sem);
vma = find_vma_intersection(current->mm, hva, hva + 1);
if (is_vm_hugetlb_page(vma)) {
hugetlb = true;
hva &= PMD_MASK;
gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
psize = PMD_SIZE;
} else {
psize = PAGE_SIZE;
if (vma->vm_start & ~PMD_MASK)
force_pte = true;
}
up_read(¤t->mm->mmap_sem);
pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
if (is_error_pfn(pfn))
return -EFAULT;
How does this work with respect to the comment that talks about reading mmu_seq before calling gfp_to_pfn_prot? Either the comment is wrong, or we read this too early.
coherent_icache_guest_page(kvm, hva, psize);
/* We need minimum second+third level pages */ ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS); if (ret)
@@ -542,26 +676,34 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, */ smp_rmb();
pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
if (is_error_pfn(pfn))
return -EFAULT;
new_pte = pfn_pte(pfn, PAGE_S2);
coherent_icache_guest_page(vcpu->kvm, gfn);
spin_lock(&vcpu->kvm->mmu_lock);
if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
spin_lock(&kvm->mmu_lock);
if (mmu_notifier_retry(kvm, mmu_seq)) goto out_unlock;
if (writable) {
kvm_set_s2pte_writable(&new_pte);
kvm_set_pfn_dirty(pfn);
if (!hugetlb && !force_pte)
hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
How do we ensure that there is no race between this pte being promoted to a pmd and another page allocation in the same pmd somewhere else in the system? We only hold the kvm lock here, so there must be some extra implicit guarantee somewhere...
This isn't a promotion to a huge page, it is a mechanism to ensure that pfn corresponds with the head page of a THP as that's where refcount information is stored. I think this is safe.
I'm still getting my brain working with kvm, so sorry don't have any other feedback yet sorry :-).
Cheers,
On Mon, Sep 23, 2013 at 11:11:07AM +0100, Marc Zyngier wrote:
Hi Christoffer,
Finally taking some time to review this patch. Sorry for the delay...
On 09/08/13 05:07, Christoffer Dall wrote:
From: Christoffer Dall cdall@cs.columbia.edu
Support transparent huge pages in KVM/ARM 32-bit and 64-bit. The whole transparent_hugepage_adjust stuff is far from pretty, but this is how it's solved on x86 so we duplicate their logic. This should be shared across architectures if possible (like many other things), but can always be changed down the road.
The pud_huge checking on the unmap path may feel a bit silly as the pud_huge check is always defined to false, but the compiler should be smart about this.
Signed-off-by: Christoffer Dall christoffer.dall@linaro.org
arch/arm/include/asm/kvm_mmu.h | 17 +++- arch/arm/kvm/mmu.c | 200 ++++++++++++++++++++++++++++++++------ arch/arm64/include/asm/kvm_mmu.h | 12 ++- 3 files changed, 194 insertions(+), 35 deletions(-)
diff --git a/arch/arm/include/asm/kvm_mmu.h b/arch/arm/include/asm/kvm_mmu.h index 472ac70..ff3ff67 100644 --- a/arch/arm/include/asm/kvm_mmu.h +++ b/arch/arm/include/asm/kvm_mmu.h @@ -62,6 +62,12 @@ phys_addr_t kvm_get_idmap_vector(void); int kvm_mmu_init(void); void kvm_clear_hyp_idmap(void);
+static inline void kvm_set_pmd(pmd_t *pmd, pmd_t new_pmd) +{
*pmd = new_pmd;
flush_pmd_entry(pmd);
+}
static inline void kvm_set_pte(pte_t *pte, pte_t new_pte) { pte_val(*pte) = new_pte; @@ -103,9 +109,15 @@ static inline void kvm_set_s2pte_writable(pte_t *pte) pte_val(*pte) |= L_PTE_S2_RDWR; }
+static inline void kvm_set_s2pmd_writable(pmd_t *pmd) +{
pmd_val(*pmd) |= L_PTE_S2_RDWR;
+}
struct kvm;
-static inline void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn) +static inline void coherent_icache_guest_page(struct kvm *kvm, hva_t hva,
unsigned long size)
{ /* * If we are going to insert an instruction page and the icache is @@ -120,8 +132,7 @@ static inline void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn) * need any kind of flushing (DDI 0406C.b - Page B3-1392). */ if (icache_is_pipt()) {
unsigned long hva = gfn_to_hva(kvm, gfn);
__cpuc_coherent_user_range(hva, hva + PAGE_SIZE);
__cpuc_coherent_user_range(hva, hva + size); } else if (!icache_is_vivt_asid_tagged()) { /* any kind of VIPT cache */ __flush_icache_all();
diff --git a/arch/arm/kvm/mmu.c b/arch/arm/kvm/mmu.c index 0988d9e..26ced77 100644 --- a/arch/arm/kvm/mmu.c +++ b/arch/arm/kvm/mmu.c @@ -19,6 +19,7 @@ #include <linux/mman.h> #include <linux/kvm_host.h> #include <linux/io.h> +#include <linux/hugetlb.h> #include <trace/events/kvm.h> #include <asm/pgalloc.h> #include <asm/cacheflush.h> @@ -41,6 +42,8 @@ static unsigned long hyp_idmap_start; static unsigned long hyp_idmap_end; static phys_addr_t hyp_idmap_vector;
+#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa) { /* @@ -93,19 +96,27 @@ static bool page_empty(void *ptr)
static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr) {
pmd_t *pmd_table = pmd_offset(pud, 0);
pud_clear(pud);
kvm_tlb_flush_vmid_ipa(kvm, addr);
pmd_free(NULL, pmd_table);
if (pud_huge(*pud)) {
pud_clear(pud);
} else {
pmd_t *pmd_table = pmd_offset(pud, 0);
pud_clear(pud);
kvm_tlb_flush_vmid_ipa(kvm, addr);
pmd_free(NULL, pmd_table);
}
Why don't we have any TLB invalidation on the huge path?
Because this code was written before we fixed the TLB invalidation race. Good that you spotted this.
put_page(virt_to_page(pud));
}
static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr) {
pte_t *pte_table = pte_offset_kernel(pmd, 0);
pmd_clear(pmd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
pte_free_kernel(NULL, pte_table);
if (kvm_pmd_huge(*pmd)) {
pmd_clear(pmd);
} else {
pte_t *pte_table = pte_offset_kernel(pmd, 0);
pmd_clear(pmd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
pte_free_kernel(NULL, pte_table);
}
Same here.
Same here.
put_page(virt_to_page(pmd));
}
@@ -136,12 +147,37 @@ static void unmap_range(struct kvm *kvm, pgd_t *pgdp, continue; }
if (pud_huge(*pud)) {
/*
* If we are dealing with a huge pud, just clear it and
* move on.
*/
clear_pud_entry(kvm, pud, addr);
addr = pud_addr_end(addr, end);
continue;
}
pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) { addr = pmd_addr_end(addr, end); continue; }
if (kvm_pmd_huge(*pmd)) {
/*
* If we are dealing with a huge pmd, just clear it and
* walk back up the ladder.
*/
clear_pmd_entry(kvm, pmd, addr);
next = pmd_addr_end(addr, end);
if (page_empty(pmd) && !page_empty(pud)) {
clear_pud_entry(kvm, pud, addr);
next = pud_addr_end(addr, end);
}
addr = next;
continue;
}
Looks like we already have the exact same sequence a few lines below. Surely we can factor it out.
Yeah, the thing is having a funciton here requires us to pass in a bunch of things, an either return the next addr or pass that by reference, and while it does save a few lines, I found the code harder to read. This is another option:
static void unmap_range(struct kvm *kvm, pgd_t *pgdp, unsigned long long start, u64 size) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; unsigned long long addr = start, end = start + size; u64 next;
while (addr < end) { pgd = pgdp + pgd_index(addr); pud = pud_offset(pgd, addr); if (pud_none(*pud)) { addr = pud_addr_end(addr, end); continue; }
if (pud_huge(*pud)) { /* * If we are dealing with a huge pud, just clear it and * move on. */ clear_pud_entry(kvm, pud, addr); addr = pud_addr_end(addr, end); continue; }
pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) { addr = pmd_addr_end(addr, end); continue; }
if (!kvm_pmd_huge(*pmd)) { pte = pte_offset_kernel(pmd, addr); clear_pte_entry(kvm, pte, addr); next = addr + PAGE_SIZE; }
/* * If the pmd entry is to be cleared, walk back up the ladder */ if (kvm_pmd_huge(*pmd) || page_empty(pte)) { clear_pmd_entry(kvm, pmd, addr); next = pmd_addr_end(addr, end); if (page_empty(pmd) && !page_empty(pud)) { clear_pud_entry(kvm, pud, addr); next = pud_addr_end(addr, end); } }
addr = next; } }
pte = pte_offset_kernel(pmd, addr); clear_pte_entry(kvm, pte, addr); next = addr + PAGE_SIZE;
@@ -420,6 +456,46 @@ void kvm_free_stage2_pgd(struct kvm *kvm) kvm->arch.pgd = NULL; }
+/* Set a huge page pmd entry */
Is it only for huge PMDs? Or can we try to share that code with what is in stage2_set_pte?
We can share it, much nicer actually:
diff --git a/arch/arm/kvm/mmu.c b/arch/arm/kvm/mmu.c index e2c58f5..345eefc 100644 --- a/arch/arm/kvm/mmu.c +++ b/arch/arm/kvm/mmu.c @@ -456,26 +447,33 @@ void kvm_free_stage2_pgd(struct kvm *kvm) kvm->arch.pgd = NULL; }
-/* Set a huge page pmd entry */ -static int stage2_set_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, - phys_addr_t addr, const pmd_t *new_pmd) +static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, + phys_addr_t addr) { pgd_t *pgd; pud_t *pud; - pmd_t *pmd, old_pmd; + pmd_t *pmd;
- /* Create stage-2 page table mapping - Level 1 */ pgd = kvm->arch.pgd + pgd_index(addr); pud = pud_offset(pgd, addr); if (pud_none(*pud)) { if (!cache) - return 0; /* ignore calls from kvm_set_spte_hva */ + return NULL; pmd = mmu_memory_cache_alloc(cache); pud_populate(NULL, pud, pmd); get_page(virt_to_page(pud)); }
- pmd = pmd_offset(pud, addr); + return pmd_offset(pud, addr); +} + +static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache + *cache, phys_addr_t addr, const pmd_t *new_pmd) +{ + pmd_t *pmd, old_pmd; + + pmd = stage2_get_pmd(kvm, cache, addr); + VM_BUG_ON(!pmd);
/* * Mapping in huge pages should only happen through a fault. If a @@ -500,25 +498,20 @@ static int stage2_set_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, phys_addr_t addr, const pte_t *new_pte, bool iomap) { - pgd_t *pgd; - pud_t *pud; pmd_t *pmd; pte_t *pte, old_pte;
- /* Create 2nd stage page table mapping - Level 1 */ - pgd = kvm->arch.pgd + pgd_index(addr); - pud = pud_offset(pgd, addr); - if (pud_none(*pud)) { - if (!cache) - return 0; /* ignore calls from kvm_set_spte_hva */ - pmd = mmu_memory_cache_alloc(cache); - pud_populate(NULL, pud, pmd); - get_page(virt_to_page(pud)); + /* Create stage-2 page table mapping - Level 1 */ + pmd = stage2_get_pmd(kvm, cache, addr); + if (!pmd) { + /* + * Ignore calls from kvm_set_spte_hva for unallocated + * address ranges. + */ + return 0; }
- pmd = pmd_offset(pud, addr); - - /* Create 2nd stage page mappings - Level 2 */ + /* Create stage-2 page mappings - Level 2 */ if (pmd_none(*pmd)) { if (!cache) return 0; /* ignore calls from kvm_set_spte_hva */ @@ -688,7 +681,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, kvm_set_s2pmd_writable(&new_pmd); kvm_set_pfn_dirty(pfn); } - ret = stage2_set_pmd(kvm, memcache, fault_ipa, &new_pmd); + ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd); } else { pte_t new_pte = pfn_pte(pfn, PAGE_S2); if (writable) {
+static int stage2_set_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
phys_addr_t addr, const pmd_t *new_pmd)
+{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd, old_pmd;
/* Create stage-2 page table mapping - Level 1 */
pgd = kvm->arch.pgd + pgd_index(addr);
pud = pud_offset(pgd, addr);
if (pud_none(*pud)) {
if (!cache)
return 0; /* ignore calls from kvm_set_spte_hva */
Do we still need this?
We didn't need it the way the code was structured in the initial verison, but we do with sharing the code with stage2_set_pte (see above).
pmd = mmu_memory_cache_alloc(cache);
pud_populate(NULL, pud, pmd);
get_page(virt_to_page(pud));
}
pmd = pmd_offset(pud, addr);
/*
* Mapping in huge pages should only happen through a fault. If a
* page is merged into a transparent huge page, the individual
* subpages of that huge page should be unmapped through MMU
* notifiers before we get here.
*
* Merging of CompoundPages is not supported; they should become
* splitting first, unmapped, merged, and mapped back in on-demand.
*/
VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
old_pmd = *pmd;
kvm_set_pmd(pmd, *new_pmd);
if (pmd_present(old_pmd))
kvm_tlb_flush_vmid_ipa(kvm, addr);
else
get_page(virt_to_page(pmd));
return 0;
+}
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, phys_addr_t addr, const pte_t *new_pte, bool iomap) @@ -442,7 +518,7 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
pmd = pmd_offset(pud, addr);
/* Create 2nd stage page table mapping - Level 2 */
/* Create 2nd stage page mappings - Level 2 */ if (pmd_none(*pmd)) { if (!cache) return 0; /* ignore calls from kvm_set_spte_hva */
@@ -508,16 +584,53 @@ out: return ret; }
+static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap) +{
pfn_t pfn = *pfnp;
gfn_t gfn = *ipap >> PAGE_SHIFT;
if (PageTransCompound(pfn_to_page(pfn))) {
unsigned long mask;
/*
* mmu_notifier_retry was successful and we hold the
* mmu_lock here, so the pmd can't become splitting
* from under us, and in turn
* __split_huge_page_refcount() can't run from under
* us and we can safely transfer the refcount from
* PG_tail to PG_head as we switch the pfn from tail to
* head.
*/
-ECANTPARSE. Well, I sort of can, but this deserves a clearer explanation.
I'll try to clarify. (BTW. I stole this comment from Avi, blame the both of us :))
mask = (PMD_SIZE / PAGE_SIZE) - 1;
mask = PTRS_PER_PMD -1;
VM_BUG_ON((gfn & mask) != (pfn & mask));
if (pfn & mask) {
gfn &= ~mask;
This doesn't seem to be used later on.
*ipap &= ~(PMD_SIZE - 1);
*ipap &= ~PMD_MASK;
ack to all three
kvm_release_pfn_clean(pfn);
pfn &= ~mask;
kvm_get_pfn(pfn);
*pfnp = pfn;
}
return true;
}
return false;
+}
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
gfn_t gfn, struct kvm_memory_slot *memslot,
struct kvm_memory_slot *memslot, unsigned long fault_status)
{
pte_t new_pte;
pfn_t pfn; int ret;
bool write_fault, writable;
bool write_fault, writable, hugetlb = false, force_pte = false; unsigned long mmu_seq;
gfn_t gfn = fault_ipa >> PAGE_SHIFT;
unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
struct kvm *kvm = vcpu->kvm; struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
struct vm_area_struct *vma;
pfn_t pfn;
unsigned long psize; write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu)); if (fault_status == FSC_PERM && !write_fault) {
@@ -525,6 +638,27 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, return -EFAULT; }
/* Let's check if we will get back a huge page */
down_read(¤t->mm->mmap_sem);
vma = find_vma_intersection(current->mm, hva, hva + 1);
if (is_vm_hugetlb_page(vma)) {
hugetlb = true;
hva &= PMD_MASK;
gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
psize = PMD_SIZE;
} else {
psize = PAGE_SIZE;
if (vma->vm_start & ~PMD_MASK)
force_pte = true;
}
up_read(¤t->mm->mmap_sem);
pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
if (is_error_pfn(pfn))
return -EFAULT;
How does this work with respect to the comment that talks about reading mmu_seq before calling gfp_to_pfn_prot? Either the comment is wrong, or we read this too early.
It doesn't, the gfn_to_pfn_prot call should be moved below the smp_rmb, I must have simply messed this up when rebasing the patch. Nice catch!
coherent_icache_guest_page(kvm, hva, psize);
/* We need minimum second+third level pages */ ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS); if (ret)
@@ -542,26 +676,34 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, */ smp_rmb();
pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
if (is_error_pfn(pfn))
return -EFAULT;
new_pte = pfn_pte(pfn, PAGE_S2);
coherent_icache_guest_page(vcpu->kvm, gfn);
spin_lock(&vcpu->kvm->mmu_lock);
if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
spin_lock(&kvm->mmu_lock);
if (mmu_notifier_retry(kvm, mmu_seq)) goto out_unlock;
if (writable) {
kvm_set_s2pte_writable(&new_pte);
kvm_set_pfn_dirty(pfn);
if (!hugetlb && !force_pte)
hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
How do we ensure that there is no race between this pte being promoted to a pmd and another page allocation in the same pmd somewhere else in the system? We only hold the kvm lock here, so there must be some extra implicit guarantee somewhere...
Steve answered this one, but the point is that any page in this pmd cannot be allocated from anywhere, because those pages are not free. At this point, if the anon user page is mapped as a THP, it will stay as such until we unlock the mmu_lock.
if (hugetlb) {
pmd_t new_pmd = pfn_pmd(pfn, PAGE_S2);
new_pmd = pmd_mkhuge(new_pmd);
if (writable) {
kvm_set_s2pmd_writable(&new_pmd);
kvm_set_pfn_dirty(pfn);
}
ret = stage2_set_pmd(kvm, memcache, fault_ipa, &new_pmd);
} else {
pte_t new_pte = pfn_pte(pfn, PAGE_S2);
if (writable) {
kvm_set_s2pte_writable(&new_pte);
kvm_set_pfn_dirty(pfn);
}
ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, false); }
stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false);
out_unlock:
spin_unlock(&vcpu->kvm->mmu_lock);
spin_unlock(&kvm->mmu_lock); kvm_release_pfn_clean(pfn);
return 0;
return ret;
}
/** @@ -630,7 +772,7 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
memslot = gfn_to_memslot(vcpu->kvm, gfn);
ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status);
ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status); if (ret == 0) ret = 1;
out_unlock: diff --git a/arch/arm64/include/asm/kvm_mmu.h b/arch/arm64/include/asm/kvm_mmu.h index efe609c..e7f3852 100644 --- a/arch/arm64/include/asm/kvm_mmu.h +++ b/arch/arm64/include/asm/kvm_mmu.h @@ -91,6 +91,7 @@ int kvm_mmu_init(void); void kvm_clear_hyp_idmap(void);
#define kvm_set_pte(ptep, pte) set_pte(ptep, pte) +#define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
static inline bool kvm_is_write_fault(unsigned long esr) { @@ -116,13 +117,18 @@ static inline void kvm_set_s2pte_writable(pte_t *pte) pte_val(*pte) |= PTE_S2_RDWR; }
+static inline void kvm_set_s2pmd_writable(pmd_t *pmd) +{
pmd_val(*pmd) |= PTE_S2_RDWR;
+}
struct kvm;
-static inline void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn) +static inline void coherent_icache_guest_page(struct kvm *kvm, hva_t hva,
unsigned long size)
{ if (!icache_is_aliasing()) { /* PIPT */
unsigned long hva = gfn_to_hva(kvm, gfn);
flush_icache_range(hva, hva + PAGE_SIZE);
flush_icache_range(hva, hva + size); } else if (!icache_is_aivivt()) { /* non ASID-tagged VIVT */ /* any kind of VIPT cache */ __flush_icache_all();
As a general comment about this patch, I think having both transparent pages *and* hugetlbfs support in the same patch makes it fairly hard to read.
I understand that is is actually convenient as most of the code is shared, but I think it would make it easier to read if the patch was split in two: first the basic hugetlb support, and then the THP madness.
What do you think?
Sure, I can split them up. I'm going to send out a v2 with the split patches so you can read that in its completeness instead of the fragments I posted above. I can always spin a v3 if you have more comments, though I still hope to get this in for the next merge window.
Thanks for the review! -Christoffer
On Mon, Sep 23, 2013 at 11:11:07AM +0100, Marc Zyngier wrote:
[...]
+static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap) +{
pfn_t pfn = *pfnp;
gfn_t gfn = *ipap >> PAGE_SHIFT;
if (PageTransCompound(pfn_to_page(pfn))) {
unsigned long mask;
/*
* mmu_notifier_retry was successful and we hold the
* mmu_lock here, so the pmd can't become splitting
* from under us, and in turn
* __split_huge_page_refcount() can't run from under
* us and we can safely transfer the refcount from
* PG_tail to PG_head as we switch the pfn from tail to
* head.
*/
-ECANTPARSE. Well, I sort of can, but this deserves a clearer explanation.
mask = (PMD_SIZE / PAGE_SIZE) - 1;
mask = PTRS_PER_PMD -1;
VM_BUG_ON((gfn & mask) != (pfn & mask));
if (pfn & mask) {
gfn &= ~mask;
This doesn't seem to be used later on.
*ipap &= ~(PMD_SIZE - 1);
*ipap &= ~PMD_MASK;
damn, I trust you too much, you surely meant *ipap &= PMD_MASK;
right?
kvm_release_pfn_clean(pfn);
pfn &= ~mask;
kvm_get_pfn(pfn);
*pfnp = pfn;
}
return true;
}
return false;
+}
-Christoffer
On 2013-10-03 21:33, Christoffer Dall wrote:
On Mon, Sep 23, 2013 at 11:11:07AM +0100, Marc Zyngier wrote:
[...]
+static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t
*ipap)
+{
pfn_t pfn = *pfnp;
gfn_t gfn = *ipap >> PAGE_SHIFT;
if (PageTransCompound(pfn_to_page(pfn))) {
unsigned long mask;
/*
* mmu_notifier_retry was successful and we hold
the
* mmu_lock here, so the pmd can't become
splitting
* from under us, and in turn
* __split_huge_page_refcount() can't run from
under
* us and we can safely transfer the refcount from
* PG_tail to PG_head as we switch the pfn from
tail to
* head.
*/
-ECANTPARSE. Well, I sort of can, but this deserves a clearer explanation.
mask = (PMD_SIZE / PAGE_SIZE) - 1;
mask = PTRS_PER_PMD -1;
VM_BUG_ON((gfn & mask) != (pfn & mask));
if (pfn & mask) {
gfn &= ~mask;
This doesn't seem to be used later on.
*ipap &= ~(PMD_SIZE - 1);
*ipap &= ~PMD_MASK;
damn, I trust you too much, you surely meant *ipap &= PMD_MASK;
right?
Indeed. Just keeping you on your toes ;-)
M.
The KVM_HPAGE_DEFINES are a little artificial on ARM, since the huge page size is statically defined at compile time and there is only a single huge page size.
Now when the main kvm code relying on these defines has been moved to the x86 specific part of the world, we can get rid of these.
Signed-off-by: Christoffer Dall christoffer.dall@linaro.org ---
[Resending this because the KVM list filter caught the subject of the previous message due to the letter X]
arch/arm/include/asm/kvm_host.h | 5 ----- 1 file changed, 5 deletions(-)
diff --git a/arch/arm/include/asm/kvm_host.h b/arch/arm/include/asm/kvm_host.h index 7d22517..e45a74b 100644 --- a/arch/arm/include/asm/kvm_host.h +++ b/arch/arm/include/asm/kvm_host.h @@ -38,11 +38,6 @@
#define KVM_VCPU_MAX_FEATURES 1
-/* We don't currently support large pages. */ -#define KVM_HPAGE_GFN_SHIFT(x) 0 -#define KVM_NR_PAGE_SIZES 1 -#define KVM_PAGES_PER_HPAGE(x) (1UL<<31) - #include <kvm/arm_vgic.h>
struct kvm_vcpu;
On Fri, Aug 09, 2013 at 07:30:13AM -0700, Christoffer Dall wrote:
The KVM_HPAGE_DEFINES are a little artificial on ARM, since the huge page size is statically defined at compile time and there is only a single huge page size.
Now when the main kvm code relying on these defines has been moved to the x86 specific part of the world, we can get rid of these.
Signed-off-by: Christoffer Dall christoffer.dall@linaro.org
[Resending this because the KVM list filter caught the subject of the previous message due to the letter X]
arch/arm/include/asm/kvm_host.h | 5 ----- 1 file changed, 5 deletions(-)
diff --git a/arch/arm/include/asm/kvm_host.h b/arch/arm/include/asm/kvm_host.h index 7d22517..e45a74b 100644 --- a/arch/arm/include/asm/kvm_host.h +++ b/arch/arm/include/asm/kvm_host.h @@ -38,11 +38,6 @@ #define KVM_VCPU_MAX_FEATURES 1 -/* We don't currently support large pages. */ -#define KVM_HPAGE_GFN_SHIFT(x) 0 -#define KVM_NR_PAGE_SIZES 1
With huge page support you do have two different page sizes, but the only code that uses those defines currently is in the x86 shadow mmu code, so I am fine with moving gfn_to_index() into x86 specific code and getting rid of those defines (you will probably need them when you will implement nested HYP mode :)). But can you do it as a separate patch series and remove the defines for all arches?
-#define KVM_PAGES_PER_HPAGE(x) (1UL<<31)
#include <kvm/arm_vgic.h> struct kvm_vcpu; -- 1.7.10.4
kvmarm mailing list kvmarm@lists.cs.columbia.edu https://lists.cs.columbia.edu/cucslists/listinfo/kvmarm
-- Gleb.
On 25 August 2013 15:05, Gleb Natapov gleb@redhat.com wrote:
(you will probably need them when you will implement nested HYP mode :)).
Smiley noted, but this is pretty unlikely since it's not possible to lie to the guest about which mode it's in, so you can't make a guest think it's in Hyp mode.
-- PMM
On Sun, Aug 25, 2013 at 03:29:17PM +0100, Peter Maydell wrote:
On 25 August 2013 15:05, Gleb Natapov gleb@redhat.com wrote:
(you will probably need them when you will implement nested HYP mode :)).
Smiley noted, but this is pretty unlikely since it's not possible to lie to the guest about which mode it's in, so you can't make a guest think it's in Hyp mode.
I suspected this, but forgot most that I read about Hyp mode by now. Need to refresh my memory ASAP. Is it impossible even with a lot of emulation? Can guest detect that it is not in a Hyp mode without trapping into hypervisor?
-- Gleb.
On 25 August 2013 15:48, Gleb Natapov gleb@redhat.com wrote:
On Sun, Aug 25, 2013 at 03:29:17PM +0100, Peter Maydell wrote:
Smiley noted, but this is pretty unlikely since it's not possible to lie to the guest about which mode it's in, so you can't make a guest think it's in Hyp mode.
I suspected this, but forgot most that I read about Hyp mode by now. Need to refresh my memory ASAP. Is it impossible even with a lot of emulation? Can guest detect that it is not in a Hyp mode without trapping into hypervisor?
Yes. The current mode is in the the low bits of the CPSR, which is readable without causing a trap. This is just the most obvious roadblock; I bet there are more. If you really had to run Hyp mode code in a VM you probably have to do it by having it all emulated via TCG.
-- PMM
On 25.08.2013, at 16:18, Peter Maydell wrote:
On 25 August 2013 15:48, Gleb Natapov gleb@redhat.com wrote:
On Sun, Aug 25, 2013 at 03:29:17PM +0100, Peter Maydell wrote:
Smiley noted, but this is pretty unlikely since it's not possible to lie to the guest about which mode it's in, so you can't make a guest think it's in Hyp mode.
I suspected this, but forgot most that I read about Hyp mode by now. Need to refresh my memory ASAP. Is it impossible even with a lot of emulation? Can guest detect that it is not in a Hyp mode without trapping into hypervisor?
Yes. The current mode is in the the low bits of the CPSR, which is readable without causing a trap. This is just the most obvious roadblock; I bet there are more. If you really had to run Hyp mode code in a VM you probably have to do it by having it all emulated via TCG.
Or in an in-kernel instruction emulator that we have lying around anyways. For kvm-in-kvm that should be good enough, as we only need to execute a few instructions in HYP mode.
Alex
On Sun, Aug 25, 2013 at 04:27:14PM +0100, Alexander Graf wrote:
On 25.08.2013, at 16:18, Peter Maydell wrote:
On 25 August 2013 15:48, Gleb Natapov gleb@redhat.com wrote:
On Sun, Aug 25, 2013 at 03:29:17PM +0100, Peter Maydell wrote:
Smiley noted, but this is pretty unlikely since it's not possible to lie to the guest about which mode it's in, so you can't make a guest think it's in Hyp mode.
I suspected this, but forgot most that I read about Hyp mode by now. Need to refresh my memory ASAP. Is it impossible even with a lot of emulation? Can guest detect that it is not in a Hyp mode without trapping into hypervisor?
Yes. The current mode is in the the low bits of the CPSR, which is readable without causing a trap. This is just the most obvious roadblock; I bet there are more. If you really had to run Hyp mode code in a VM you probably have to do it by having it all emulated via TCG.
Or in an in-kernel instruction emulator that we have lying around anyways. For kvm-in-kvm that should be good enough, as we only need to execute a few instructions in HYP mode.
Will require emulation on each trap to Hyp mode tough. But since you already have ideas about nested Hyp I consider it done :)
-- Gleb.
On Sun, Aug 25, 2013 at 04:18:02PM +0100, Peter Maydell wrote:
On 25 August 2013 15:48, Gleb Natapov gleb@redhat.com wrote:
On Sun, Aug 25, 2013 at 03:29:17PM +0100, Peter Maydell wrote:
Smiley noted, but this is pretty unlikely since it's not possible to lie to the guest about which mode it's in, so you can't make a guest think it's in Hyp mode.
I suspected this, but forgot most that I read about Hyp mode by now. Need to refresh my memory ASAP. Is it impossible even with a lot of emulation? Can guest detect that it is not in a Hyp mode without trapping into hypervisor?
Yes. The current mode is in the the low bits of the CPSR, which is readable without causing a trap. This is just the most obvious roadblock; I bet there are more. If you really had to run Hyp mode code in a VM you probably have to do it by having it all emulated via TCG.
Or through some highly paravirtualized nested virtualization solution if that is ever relevant.
-Christoffer
linaro-kernel@lists.linaro.org