On 27/02/19 22:31, Sasha Levin wrote:
> This is a note to let you know that I've just added the patch titled
>
> sfc: suppress duplicate nvmem partition types in efx_ef10_mtd_probe
>
> to the 4.20-stable tree which can be found at:
> http://www.kernel.org/git/?p=linux/kernel/git/stable/stable-queue.git;a=sum…
>
> The filename of the patch is:
> sfc-suppress-duplicate-nvmem-partition-types-in-efx_.patch
> and it can be found in the queue-4.20 subdirectory.
>
> If you, or anyone else, feels it should not be added to the stable tree,
> please let <stable(a)vger.kernel.org> know about it.
If you are taking this patch, you also need c65285428b6e
sfc: initialise found bitmap in efx_ef10_mtd_probe
which fixes bugs in the above patch; I don't currently see it in the
stable-queue.
(Also, it's not clear whether the original fix is really needed on stable
kernels; while the bug is present there, it is harmless until a v5.0-rc1
commit, probably c4dfa25ab307 ("mtd: add support for reading MTD devices via the nvmem API")
interacts with it.)
The above remarks apply to all six stable trees for which this patch has
been queued.
-Ed
The information contained in this message is confidential and is intended for the addressee(s) only. If you have received this message in error, please notify the sender immediately and delete the message. Unless you are an addressee (or authorized to receive for an addressee), you may not use, copy or disclose to anyone this message or any information contained in this message. The unauthorized use, disclosure, copying or alteration of this message is strictly prohibited.
Kernel 4.14 fails to build with GCC 8 on powerpc64, due to 'in' being
uninitialised in epapr_hypercall*.
This is fixed in commit 186b8f1587c79c2fa04bfa392fdf08 upstream, and
this commit applies cleanly to the 4.14 tree. This commit is already on
the 4.19 branch.
Best,
--arw
--
A. Wilcox (awilfox)
Project Lead, Adélie Linux
https://www.adelielinux.org
Hi Sasha,
Thanks for the heads-up!
On Tue, Feb 26, 2019 at 09:24:00PM +0000, Sasha Levin wrote:
> Hi,
>
> [This is an automated email]
>
> This commit has been processed because it contains a -stable tag.
> The stable tag indicates that it's relevant for the following trees: all
>
> The bot has tested the following trees: v4.20.12, v4.19.25, v4.14.103, v4.9.160, v4.4.176, v3.18.136.
>
Lu Baolu, can you please check for which stable trees this commit is
relevant and provide the backports of the patch (with dependencies if
necessary) to the relevant stable trees?
Thanks,
Joerg
From: Mike Kravetz <mike.kravetz(a)oracle.com>
Subject: hugetlbfs: fix races and page leaks during migration
hugetlb pages should only be migrated if they are 'active'. The routines
set/clear_page_huge_active() modify the active state of hugetlb pages.
When a new hugetlb page is allocated at fault time, set_page_huge_active
is called before the page is locked. Therefore, another thread could race
and migrate the page while it is being added to page table by the fault
code. This race is somewhat hard to trigger, but can be seen by
strategically adding udelay to simulate worst case scheduling behavior.
Depending on 'how' the code races, various BUG()s could be triggered.
To address this issue, simply delay the set_page_huge_active call until
after the page is successfully added to the page table.
Hugetlb pages can also be leaked at migration time if the pages are
associated with a file in an explicitly mounted hugetlbfs filesystem. For
example, consider a two node system with 4GB worth of huge pages
available. A program mmaps a 2G file in a hugetlbfs filesystem. It then
migrates the pages associated with the file from one node to another.
When the program exits, huge page counts are as follows:
node0
1024 free_hugepages
1024 nr_hugepages
node1
0 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
That is as expected. 2G of huge pages are taken from the free_hugepages
counts, and 2G is the size of the file in the explicitly mounted
filesystem. If the file is then removed, the counts become:
node0
1024 free_hugepages
1024 nr_hugepages
node1
1024 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
Note that the filesystem still shows 2G of pages used, while there
actually are no huge pages in use. The only way to 'fix' the filesystem
accounting is to unmount the filesystem
If a hugetlb page is associated with an explicitly mounted filesystem,
this information in contained in the page_private field. At migration
time, this information is not preserved. To fix, simply transfer
page_private from old to new page at migration time if necessary.
There is a related race with removing a huge page from a file and
migration. When a huge page is removed from the pagecache, the
page_mapping() field is cleared, yet page_private remains set until the
page is actually freed by free_huge_page(). A page could be migrated
while in this state. However, since page_mapping() is not set the
hugetlbfs specific routine to transfer page_private is not called and we
leak the page count in the filesystem. To fix, check for this condition
before migrating a huge page. If the condition is detected, return EBUSY
for the page.
Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com
Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com
Fixes: bcc54222309c ("mm: hugetlb: introduce page_huge_active")
Signed-off-by: Mike Kravetz <mike.kravetz(a)oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi(a)ah.jp.nec.com>
Cc: Michal Hocko <mhocko(a)kernel.org>
Cc: Andrea Arcangeli <aarcange(a)redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov(a)linux.intel.com>
Cc: Mel Gorman <mgorman(a)techsingularity.net>
Cc: Davidlohr Bueso <dave(a)stgolabs.net>
Cc: <stable(a)vger.kernel.org>
[mike.kravetz(a)oracle.com: v2]
Link: http://lkml.kernel.org/r/7534d322-d782-8ac6-1c8d-a8dc380eb3ab@oracle.com
[mike.kravetz(a)oracle.com: update comment and changelog]
Link: http://lkml.kernel.org/r/420bcfd6-158b-38e4-98da-26d0cd85bd01@oracle.com
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
---
fs/hugetlbfs/inode.c | 12 ++++++++++++
mm/hugetlb.c | 16 +++++++++++++---
mm/migrate.c | 11 +++++++++++
3 files changed, 36 insertions(+), 3 deletions(-)
--- a/fs/hugetlbfs/inode.c~huegtlbfs-fix-races-and-page-leaks-during-migration
+++ a/fs/hugetlbfs/inode.c
@@ -859,6 +859,18 @@ static int hugetlbfs_migrate_page(struct
rc = migrate_huge_page_move_mapping(mapping, newpage, page);
if (rc != MIGRATEPAGE_SUCCESS)
return rc;
+
+ /*
+ * page_private is subpool pointer in hugetlb pages. Transfer to
+ * new page. PagePrivate is not associated with page_private for
+ * hugetlb pages and can not be set here as only page_huge_active
+ * pages can be migrated.
+ */
+ if (page_private(page)) {
+ set_page_private(newpage, page_private(page));
+ set_page_private(page, 0);
+ }
+
if (mode != MIGRATE_SYNC_NO_COPY)
migrate_page_copy(newpage, page);
else
--- a/mm/hugetlb.c~huegtlbfs-fix-races-and-page-leaks-during-migration
+++ a/mm/hugetlb.c
@@ -3624,7 +3624,6 @@ retry_avoidcopy:
copy_user_huge_page(new_page, old_page, address, vma,
pages_per_huge_page(h));
__SetPageUptodate(new_page);
- set_page_huge_active(new_page);
mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h));
mmu_notifier_invalidate_range_start(&range);
@@ -3645,6 +3644,7 @@ retry_avoidcopy:
make_huge_pte(vma, new_page, 1));
page_remove_rmap(old_page, true);
hugepage_add_new_anon_rmap(new_page, vma, haddr);
+ set_page_huge_active(new_page);
/* Make the old page be freed below */
new_page = old_page;
}
@@ -3729,6 +3729,7 @@ static vm_fault_t hugetlb_no_page(struct
pte_t new_pte;
spinlock_t *ptl;
unsigned long haddr = address & huge_page_mask(h);
+ bool new_page = false;
/*
* Currently, we are forced to kill the process in the event the
@@ -3790,7 +3791,7 @@ retry:
}
clear_huge_page(page, address, pages_per_huge_page(h));
__SetPageUptodate(page);
- set_page_huge_active(page);
+ new_page = true;
if (vma->vm_flags & VM_MAYSHARE) {
int err = huge_add_to_page_cache(page, mapping, idx);
@@ -3861,6 +3862,15 @@ retry:
}
spin_unlock(ptl);
+
+ /*
+ * Only make newly allocated pages active. Existing pages found
+ * in the pagecache could be !page_huge_active() if they have been
+ * isolated for migration.
+ */
+ if (new_page)
+ set_page_huge_active(page);
+
unlock_page(page);
out:
return ret;
@@ -4095,7 +4105,6 @@ int hugetlb_mcopy_atomic_pte(struct mm_s
* the set_pte_at() write.
*/
__SetPageUptodate(page);
- set_page_huge_active(page);
mapping = dst_vma->vm_file->f_mapping;
idx = vma_hugecache_offset(h, dst_vma, dst_addr);
@@ -4163,6 +4172,7 @@ int hugetlb_mcopy_atomic_pte(struct mm_s
update_mmu_cache(dst_vma, dst_addr, dst_pte);
spin_unlock(ptl);
+ set_page_huge_active(page);
if (vm_shared)
unlock_page(page);
ret = 0;
--- a/mm/migrate.c~huegtlbfs-fix-races-and-page-leaks-during-migration
+++ a/mm/migrate.c
@@ -1315,6 +1315,16 @@ static int unmap_and_move_huge_page(new_
lock_page(hpage);
}
+ /*
+ * Check for pages which are in the process of being freed. Without
+ * page_mapping() set, hugetlbfs specific move page routine will not
+ * be called and we could leak usage counts for subpools.
+ */
+ if (page_private(hpage) && !page_mapping(hpage)) {
+ rc = -EBUSY;
+ goto out_unlock;
+ }
+
if (PageAnon(hpage))
anon_vma = page_get_anon_vma(hpage);
@@ -1345,6 +1355,7 @@ put_anon:
put_new_page = NULL;
}
+out_unlock:
unlock_page(hpage);
out:
if (rc != -EAGAIN)
_