Hello,
We ran automated tests on a recent commit from this kernel tree:
Kernel repo: git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable-rc.git
Commit: 13da583a3120 - Linux 5.4.14-rc1
The results of these automated tests are provided below.
Overall result: PASSED
Merge: OK
Compile: OK
Tests: OK
All kernel binaries, config files, and logs are available for download here:
https://artifacts.cki-project.org/pipelines/393609
Please reply to this email if you have any questions about the tests that we
ran or if you have any suggestions on how to make future tests more effective.
,-. ,-.
( C ) ( K ) Continuous
`-',-.`-' Kernel
( I ) Integration
`-'
______________________________________________________________________________
Compile testing
---------------
We compiled the kernel for 3 architectures:
aarch64:
make options: -j30 INSTALL_MOD_STRIP=1 targz-pkg
ppc64le:
make options: -j30 INSTALL_MOD_STRIP=1 targz-pkg
x86_64:
make options: -j30 INSTALL_MOD_STRIP=1 targz-pkg
Hardware testing
----------------
We booted each kernel and ran the following tests:
aarch64:
Host 1:
✅ Boot test
✅ xfstests: ext4
✅ xfstests: xfs
✅ selinux-policy: serge-testsuite
✅ lvm thinp sanity
✅ storage: software RAID testing
✅ stress: stress-ng
🚧 ✅ IPMI driver test
🚧 ✅ IPMItool loop stress test
🚧 ✅ Storage blktests
Host 2:
✅ Boot test
✅ Podman system integration test (as root)
✅ Podman system integration test (as user)
✅ LTP
✅ Loopdev Sanity
✅ Memory function: memfd_create
✅ AMTU (Abstract Machine Test Utility)
✅ Networking bridge: sanity
✅ Ethernet drivers sanity
✅ Networking MACsec: sanity
✅ Networking socket: fuzz
✅ Networking sctp-auth: sockopts test
✅ Networking: igmp conformance test
✅ Networking route: pmtu
✅ Networking route_func: local
✅ Networking route_func: forward
✅ Networking TCP: keepalive test
✅ Networking UDP: socket
✅ Networking tunnel: geneve basic test
✅ Networking tunnel: gre basic
✅ L2TP basic test
✅ Networking tunnel: vxlan basic
✅ Networking ipsec: basic netns transport
✅ Networking ipsec: basic netns tunnel
✅ audit: audit testsuite test
✅ httpd: mod_ssl smoke sanity
✅ tuned: tune-processes-through-perf
✅ ALSA PCM loopback test
✅ ALSA Control (mixer) Userspace Element test
✅ storage: SCSI VPD
✅ trace: ftrace/tracer
🚧 ✅ CIFS Connectathon
🚧 ✅ POSIX pjd-fstest suites
🚧 ✅ jvm test suite
🚧 ✅ Memory function: kaslr
🚧 ✅ LTP: openposix test suite
🚧 ✅ Networking vnic: ipvlan/basic
🚧 ✅ iotop: sanity
🚧 ✅ Usex - version 1.9-29
🚧 ✅ storage: dm/common
ppc64le:
Host 1:
✅ Boot test
✅ xfstests: ext4
✅ xfstests: xfs
✅ selinux-policy: serge-testsuite
✅ lvm thinp sanity
✅ storage: software RAID testing
🚧 ✅ IPMI driver test
🚧 ✅ IPMItool loop stress test
🚧 ✅ Storage blktests
Host 2:
✅ Boot test
✅ Podman system integration test (as root)
✅ Podman system integration test (as user)
✅ LTP
✅ Loopdev Sanity
✅ Memory function: memfd_create
✅ AMTU (Abstract Machine Test Utility)
✅ Networking bridge: sanity
✅ Ethernet drivers sanity
✅ Networking MACsec: sanity
✅ Networking socket: fuzz
✅ Networking sctp-auth: sockopts test
✅ Networking route: pmtu
✅ Networking route_func: local
✅ Networking route_func: forward
✅ Networking TCP: keepalive test
✅ Networking UDP: socket
✅ Networking tunnel: geneve basic test
✅ Networking tunnel: gre basic
✅ L2TP basic test
✅ Networking tunnel: vxlan basic
✅ Networking ipsec: basic netns tunnel
✅ audit: audit testsuite test
✅ httpd: mod_ssl smoke sanity
✅ tuned: tune-processes-through-perf
✅ ALSA PCM loopback test
✅ ALSA Control (mixer) Userspace Element test
✅ trace: ftrace/tracer
🚧 ✅ CIFS Connectathon
🚧 ✅ POSIX pjd-fstest suites
🚧 ✅ jvm test suite
🚧 ✅ Memory function: kaslr
🚧 ✅ LTP: openposix test suite
🚧 ✅ Networking vnic: ipvlan/basic
🚧 ✅ iotop: sanity
🚧 ✅ Usex - version 1.9-29
🚧 ✅ storage: dm/common
x86_64:
Host 1:
⚡ Internal infrastructure issues prevented one or more tests (marked
with ⚡⚡⚡) from running on this architecture.
This is not the fault of the kernel that was tested.
✅ Boot test
✅ xfstests: ext4
✅ xfstests: xfs
✅ selinux-policy: serge-testsuite
✅ lvm thinp sanity
✅ storage: software RAID testing
✅ stress: stress-ng
🚧 ✅ IOMMU boot test
🚧 ⚡⚡⚡ IPMI driver test
🚧 ✅ IPMItool loop stress test
🚧 ✅ Storage blktests
Host 2:
✅ Boot test
✅ Storage SAN device stress - mpt3sas driver
Host 3:
✅ Boot test
✅ Podman system integration test (as root)
✅ Podman system integration test (as user)
✅ LTP
✅ Loopdev Sanity
✅ Memory function: memfd_create
✅ AMTU (Abstract Machine Test Utility)
✅ Networking bridge: sanity
✅ Ethernet drivers sanity
✅ Networking MACsec: sanity
✅ Networking socket: fuzz
✅ Networking sctp-auth: sockopts test
✅ Networking: igmp conformance test
✅ Networking route: pmtu
✅ Networking route_func: local
✅ Networking route_func: forward
✅ Networking TCP: keepalive test
✅ Networking UDP: socket
✅ Networking tunnel: geneve basic test
✅ Networking tunnel: gre basic
✅ L2TP basic test
✅ Networking tunnel: vxlan basic
✅ Networking ipsec: basic netns transport
✅ Networking ipsec: basic netns tunnel
✅ audit: audit testsuite test
✅ httpd: mod_ssl smoke sanity
✅ tuned: tune-processes-through-perf
✅ pciutils: sanity smoke test
✅ ALSA PCM loopback test
✅ ALSA Control (mixer) Userspace Element test
✅ storage: SCSI VPD
✅ trace: ftrace/tracer
🚧 ✅ CIFS Connectathon
🚧 ✅ POSIX pjd-fstest suites
🚧 ✅ jvm test suite
🚧 ✅ Memory function: kaslr
🚧 ✅ LTP: openposix test suite
🚧 ✅ Networking vnic: ipvlan/basic
🚧 ✅ iotop: sanity
🚧 ✅ Usex - version 1.9-29
🚧 ✅ storage: dm/common
Host 4:
✅ Boot test
✅ Storage SAN device stress - megaraid_sas
Test sources: https://github.com/CKI-project/tests-beaker
💚 Pull requests are welcome for new tests or improvements to existing tests!
Waived tests
------------
If the test run included waived tests, they are marked with 🚧. Such tests are
executed but their results are not taken into account. Tests are waived when
their results are not reliable enough, e.g. when they're just introduced or are
being fixed.
Testing timeout
---------------
We aim to provide a report within reasonable timeframe. Tests that haven't
finished running are marked with ⏱. Reports for non-upstream kernels have
a Beaker recipe linked to next to each host.
The following commit has been merged into the x86/urgent branch of tip:
Commit-ID: b8511ccc75c033f6d54188ea4df7bf1e85778740
Gitweb: https://git.kernel.org/tip/b8511ccc75c033f6d54188ea4df7bf1e85778740
Author: Xiaochen Shen <xiaochen.shen(a)intel.com>
AuthorDate: Thu, 09 Jan 2020 00:28:03 +08:00
Committer: Borislav Petkov <bp(a)suse.de>
CommitterDate: Mon, 20 Jan 2020 16:45:43 +01:00
x86/resctrl: Fix use-after-free when deleting resource groups
A resource group (rdtgrp) contains a reference count (rdtgrp->waitcount)
that indicates how many waiters expect this rdtgrp to exist. Waiters
could be waiting on rdtgroup_mutex or some work sitting on a task's
workqueue for when the task returns from kernel mode or exits.
The deletion of a rdtgrp is intended to have two phases:
(1) while holding rdtgroup_mutex the necessary cleanup is done and
rdtgrp->flags is set to RDT_DELETED,
(2) after releasing the rdtgroup_mutex, the rdtgrp structure is freed
only if there are no waiters and its flag is set to RDT_DELETED. Upon
gaining access to rdtgroup_mutex or rdtgrp, a waiter is required to check
for the RDT_DELETED flag.
When unmounting the resctrl file system or deleting ctrl_mon groups,
all of the subdirectories are removed and the data structure of rdtgrp
is forcibly freed without checking rdtgrp->waitcount. If at this point
there was a waiter on rdtgrp then a use-after-free issue occurs when the
waiter starts running and accesses the rdtgrp structure it was waiting
on.
See kfree() calls in [1], [2] and [3] in these two call paths in
following scenarios:
(1) rdt_kill_sb() -> rmdir_all_sub() -> free_all_child_rdtgrp()
(2) rdtgroup_rmdir() -> rdtgroup_rmdir_ctrl() -> free_all_child_rdtgrp()
There are several scenarios that result in use-after-free issue in
following:
Scenario 1:
-----------
In Thread 1, rdtgroup_tasks_write() adds a task_work callback
move_myself(). If move_myself() is scheduled to execute after Thread 2
rdt_kill_sb() is finished, referring to earlier rdtgrp memory
(rdtgrp->waitcount) which was already freed in Thread 2 results in
use-after-free issue.
Thread 1 (rdtgroup_tasks_write) Thread 2 (rdt_kill_sb)
------------------------------- ----------------------
rdtgroup_kn_lock_live
atomic_inc(&rdtgrp->waitcount)
mutex_lock
rdtgroup_move_task
__rdtgroup_move_task
/*
* Take an extra refcount, so rdtgrp cannot be freed
* before the call back move_myself has been invoked
*/
atomic_inc(&rdtgrp->waitcount)
/* Callback move_myself will be scheduled for later */
task_work_add(move_myself)
rdtgroup_kn_unlock
mutex_unlock
atomic_dec_and_test(&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
mutex_lock
rmdir_all_sub
/*
* sentry and rdtgrp are freed
* without checking refcount
*/
free_all_child_rdtgrp
kfree(sentry)*[1]
kfree(rdtgrp)*[2]
mutex_unlock
/*
* Callback is scheduled to execute
* after rdt_kill_sb is finished
*/
move_myself
/*
* Use-after-free: refer to earlier rdtgrp
* memory which was freed in [1] or [2].
*/
atomic_dec_and_test(&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
kfree(rdtgrp)
Scenario 2:
-----------
In Thread 1, rdtgroup_tasks_write() adds a task_work callback
move_myself(). If move_myself() is scheduled to execute after Thread 2
rdtgroup_rmdir() is finished, referring to earlier rdtgrp memory
(rdtgrp->waitcount) which was already freed in Thread 2 results in
use-after-free issue.
Thread 1 (rdtgroup_tasks_write) Thread 2 (rdtgroup_rmdir)
------------------------------- -------------------------
rdtgroup_kn_lock_live
atomic_inc(&rdtgrp->waitcount)
mutex_lock
rdtgroup_move_task
__rdtgroup_move_task
/*
* Take an extra refcount, so rdtgrp cannot be freed
* before the call back move_myself has been invoked
*/
atomic_inc(&rdtgrp->waitcount)
/* Callback move_myself will be scheduled for later */
task_work_add(move_myself)
rdtgroup_kn_unlock
mutex_unlock
atomic_dec_and_test(&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
rdtgroup_kn_lock_live
atomic_inc(&rdtgrp->waitcount)
mutex_lock
rdtgroup_rmdir_ctrl
free_all_child_rdtgrp
/*
* sentry is freed without
* checking refcount
*/
kfree(sentry)*[3]
rdtgroup_ctrl_remove
rdtgrp->flags = RDT_DELETED
rdtgroup_kn_unlock
mutex_unlock
atomic_dec_and_test(
&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
kfree(rdtgrp)
/*
* Callback is scheduled to execute
* after rdt_kill_sb is finished
*/
move_myself
/*
* Use-after-free: refer to earlier rdtgrp
* memory which was freed in [3].
*/
atomic_dec_and_test(&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
kfree(rdtgrp)
If CONFIG_DEBUG_SLAB=y, Slab corruption on kmalloc-2k can be observed
like following. Note that "0x6b" is POISON_FREE after kfree(). The
corrupted bits "0x6a", "0x64" at offset 0x424 correspond to
waitcount member of struct rdtgroup which was freed:
Slab corruption (Not tainted): kmalloc-2k start=ffff9504c5b0d000, len=2048
420: 6b 6b 6b 6b 6a 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkjkkkkkkkkkkk
Single bit error detected. Probably bad RAM.
Run memtest86+ or a similar memory test tool.
Next obj: start=ffff9504c5b0d800, len=2048
000: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
010: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
Slab corruption (Not tainted): kmalloc-2k start=ffff9504c58ab800, len=2048
420: 6b 6b 6b 6b 64 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkdkkkkkkkkkkk
Prev obj: start=ffff9504c58ab000, len=2048
000: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
010: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
Fix this by taking reference count (waitcount) of rdtgrp into account in
the two call paths that currently do not do so. Instead of always
freeing the resource group it will only be freed if there are no waiters
on it. If there are waiters, the resource group will have its flags set
to RDT_DELETED.
It will be left to the waiter to free the resource group when it starts
running and finding that it was the last waiter and the resource group
has been removed (rdtgrp->flags & RDT_DELETED) since. (1) rdt_kill_sb()
-> rmdir_all_sub() -> free_all_child_rdtgrp() (2) rdtgroup_rmdir() ->
rdtgroup_rmdir_ctrl() -> free_all_child_rdtgrp()
Fixes: f3cbeacaa06e ("x86/intel_rdt/cqm: Add rmdir support")
Fixes: 60cf5e101fd4 ("x86/intel_rdt: Add mkdir to resctrl file system")
Suggested-by: Reinette Chatre <reinette.chatre(a)intel.com>
Signed-off-by: Xiaochen Shen <xiaochen.shen(a)intel.com>
Signed-off-by: Borislav Petkov <bp(a)suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre(a)intel.com>
Reviewed-by: Tony Luck <tony.luck(a)intel.com>
Acked-by: Thomas Gleixner <tglx(a)linutronix.de>
Cc: stable(a)vger.kernel.org
Link: https://lkml.kernel.org/r/1578500886-21771-2-git-send-email-xiaochen.shen@i…
---
arch/x86/kernel/cpu/resctrl/rdtgroup.c | 12 ++++++++++--
1 file changed, 10 insertions(+), 2 deletions(-)
diff --git a/arch/x86/kernel/cpu/resctrl/rdtgroup.c b/arch/x86/kernel/cpu/resctrl/rdtgroup.c
index dac7209..23904ab 100644
--- a/arch/x86/kernel/cpu/resctrl/rdtgroup.c
+++ b/arch/x86/kernel/cpu/resctrl/rdtgroup.c
@@ -2205,7 +2205,11 @@ static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
free_rmid(sentry->mon.rmid);
list_del(&sentry->mon.crdtgrp_list);
- kfree(sentry);
+
+ if (atomic_read(&sentry->waitcount) != 0)
+ sentry->flags = RDT_DELETED;
+ else
+ kfree(sentry);
}
}
@@ -2243,7 +2247,11 @@ static void rmdir_all_sub(void)
kernfs_remove(rdtgrp->kn);
list_del(&rdtgrp->rdtgroup_list);
- kfree(rdtgrp);
+
+ if (atomic_read(&rdtgrp->waitcount) != 0)
+ rdtgrp->flags = RDT_DELETED;
+ else
+ kfree(rdtgrp);
}
/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
update_closid_rmid(cpu_online_mask, &rdtgroup_default);
The following commit has been merged into the x86/urgent branch of tip:
Commit-ID: 074fadee59ee7a9d2b216e9854bd4efb5dad679f
Gitweb: https://git.kernel.org/tip/074fadee59ee7a9d2b216e9854bd4efb5dad679f
Author: Xiaochen Shen <xiaochen.shen(a)intel.com>
AuthorDate: Thu, 09 Jan 2020 00:28:04 +08:00
Committer: Borislav Petkov <bp(a)suse.de>
CommitterDate: Mon, 20 Jan 2020 16:56:11 +01:00
x86/resctrl: Fix use-after-free due to inaccurate refcount of rdtgroup
There is a race condition in the following scenario which results in an
use-after-free issue when reading a monitoring file and deleting the
parent ctrl_mon group concurrently:
Thread 1 calls atomic_inc() to take refcount of rdtgrp and then calls
kernfs_break_active_protection() to drop the active reference of kernfs
node in rdtgroup_kn_lock_live().
In Thread 2, kernfs_remove() is a blocking routine. It waits on all sub
kernfs nodes to drop the active reference when removing all subtree
kernfs nodes recursively. Thread 2 could block on kernfs_remove() until
Thread 1 calls kernfs_break_active_protection(). Only after
kernfs_remove() completes the refcount of rdtgrp could be trusted.
Before Thread 1 calls atomic_inc() and kernfs_break_active_protection(),
Thread 2 could call kfree() when the refcount of rdtgrp (sentry) is 0
instead of 1 due to the race.
In Thread 1, in rdtgroup_kn_unlock(), referring to earlier rdtgrp memory
(rdtgrp->waitcount) which was already freed in Thread 2 results in
use-after-free issue.
Thread 1 (rdtgroup_mondata_show) Thread 2 (rdtgroup_rmdir)
-------------------------------- -------------------------
rdtgroup_kn_lock_live
/*
* kn active protection until
* kernfs_break_active_protection(kn)
*/
rdtgrp = kernfs_to_rdtgroup(kn)
rdtgroup_kn_lock_live
atomic_inc(&rdtgrp->waitcount)
mutex_lock
rdtgroup_rmdir_ctrl
free_all_child_rdtgrp
/*
* sentry->waitcount should be 1
* but is 0 now due to the race.
*/
kfree(sentry)*[1]
/*
* Only after kernfs_remove()
* completes, the refcount of
* rdtgrp could be trusted.
*/
atomic_inc(&rdtgrp->waitcount)
/* kn->active-- */
kernfs_break_active_protection(kn)
rdtgroup_ctrl_remove
rdtgrp->flags = RDT_DELETED
/*
* Blocking routine, wait for
* all sub kernfs nodes to drop
* active reference in
* kernfs_break_active_protection.
*/
kernfs_remove(rdtgrp->kn)
rdtgroup_kn_unlock
mutex_unlock
atomic_dec_and_test(
&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
kernfs_unbreak_active_protection(kn)
kfree(rdtgrp)
mutex_lock
mon_event_read
rdtgroup_kn_unlock
mutex_unlock
/*
* Use-after-free: refer to earlier rdtgrp
* memory which was freed in [1].
*/
atomic_dec_and_test(&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
/* kn->active++ */
kernfs_unbreak_active_protection(kn)
kfree(rdtgrp)
Fix it by moving free_all_child_rdtgrp() to after kernfs_remove() in
rdtgroup_rmdir_ctrl() to ensure it has the accurate refcount of rdtgrp.
Fixes: f3cbeacaa06e ("x86/intel_rdt/cqm: Add rmdir support")
Suggested-by: Reinette Chatre <reinette.chatre(a)intel.com>
Signed-off-by: Xiaochen Shen <xiaochen.shen(a)intel.com>
Signed-off-by: Borislav Petkov <bp(a)suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre(a)intel.com>
Reviewed-by: Tony Luck <tony.luck(a)intel.com>
Acked-by: Thomas Gleixner <tglx(a)linutronix.de>
Cc: stable(a)vger.kernel.org
Link: https://lkml.kernel.org/r/1578500886-21771-3-git-send-email-xiaochen.shen@i…
---
arch/x86/kernel/cpu/resctrl/rdtgroup.c | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/arch/x86/kernel/cpu/resctrl/rdtgroup.c b/arch/x86/kernel/cpu/resctrl/rdtgroup.c
index 23904ab..caab397 100644
--- a/arch/x86/kernel/cpu/resctrl/rdtgroup.c
+++ b/arch/x86/kernel/cpu/resctrl/rdtgroup.c
@@ -2960,13 +2960,13 @@ static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
closid_free(rdtgrp->closid);
free_rmid(rdtgrp->mon.rmid);
+ rdtgroup_ctrl_remove(kn, rdtgrp);
+
/*
* Free all the child monitor group rmids.
*/
free_all_child_rdtgrp(rdtgrp);
- rdtgroup_ctrl_remove(kn, rdtgrp);
-
return 0;
}
The following commit has been merged into the x86/urgent branch of tip:
Commit-ID: 334b0f4e9b1b4a1d475f803419d202f6c5e4d18e
Gitweb: https://git.kernel.org/tip/334b0f4e9b1b4a1d475f803419d202f6c5e4d18e
Author: Xiaochen Shen <xiaochen.shen(a)intel.com>
AuthorDate: Thu, 09 Jan 2020 00:28:05 +08:00
Committer: Borislav Petkov <bp(a)suse.de>
CommitterDate: Mon, 20 Jan 2020 16:57:53 +01:00
x86/resctrl: Fix a deadlock due to inaccurate reference
There is a race condition which results in a deadlock when rmdir and
mkdir execute concurrently:
$ ls /sys/fs/resctrl/c1/mon_groups/m1/
cpus cpus_list mon_data tasks
Thread 1: rmdir /sys/fs/resctrl/c1
Thread 2: mkdir /sys/fs/resctrl/c1/mon_groups/m1
3 locks held by mkdir/48649:
#0: (sb_writers#17){.+.+}, at: [<ffffffffb4ca2aa0>] mnt_want_write+0x20/0x50
#1: (&type->i_mutex_dir_key#8/1){+.+.}, at: [<ffffffffb4c8c13b>] filename_create+0x7b/0x170
#2: (rdtgroup_mutex){+.+.}, at: [<ffffffffb4a4389d>] rdtgroup_kn_lock_live+0x3d/0x70
4 locks held by rmdir/48652:
#0: (sb_writers#17){.+.+}, at: [<ffffffffb4ca2aa0>] mnt_want_write+0x20/0x50
#1: (&type->i_mutex_dir_key#8/1){+.+.}, at: [<ffffffffb4c8c3cf>] do_rmdir+0x13f/0x1e0
#2: (&type->i_mutex_dir_key#8){++++}, at: [<ffffffffb4c86d5d>] vfs_rmdir+0x4d/0x120
#3: (rdtgroup_mutex){+.+.}, at: [<ffffffffb4a4389d>] rdtgroup_kn_lock_live+0x3d/0x70
Thread 1 is deleting control group "c1". Holding rdtgroup_mutex,
kernfs_remove() removes all kernfs nodes under directory "c1"
recursively, then waits for sub kernfs node "mon_groups" to drop active
reference.
Thread 2 is trying to create a subdirectory "m1" in the "mon_groups"
directory. The wrapper kernfs_iop_mkdir() takes an active reference to
the "mon_groups" directory but the code drops the active reference to
the parent directory "c1" instead.
As a result, Thread 1 is blocked on waiting for active reference to drop
and never release rdtgroup_mutex, while Thread 2 is also blocked on
trying to get rdtgroup_mutex.
Thread 1 (rdtgroup_rmdir) Thread 2 (rdtgroup_mkdir)
(rmdir /sys/fs/resctrl/c1) (mkdir /sys/fs/resctrl/c1/mon_groups/m1)
------------------------- -------------------------
kernfs_iop_mkdir
/*
* kn: "m1", parent_kn: "mon_groups",
* prgrp_kn: parent_kn->parent: "c1",
*
* "mon_groups", parent_kn->active++: 1
*/
kernfs_get_active(parent_kn)
kernfs_iop_rmdir
/* "c1", kn->active++ */
kernfs_get_active(kn)
rdtgroup_kn_lock_live
atomic_inc(&rdtgrp->waitcount)
/* "c1", kn->active-- */
kernfs_break_active_protection(kn)
mutex_lock
rdtgroup_rmdir_ctrl
free_all_child_rdtgrp
sentry->flags = RDT_DELETED
rdtgroup_ctrl_remove
rdtgrp->flags = RDT_DELETED
kernfs_get(kn)
kernfs_remove(rdtgrp->kn)
__kernfs_remove
/* "mon_groups", sub_kn */
atomic_add(KN_DEACTIVATED_BIAS, &sub_kn->active)
kernfs_drain(sub_kn)
/*
* sub_kn->active == KN_DEACTIVATED_BIAS + 1,
* waiting on sub_kn->active to drop, but it
* never drops in Thread 2 which is blocked
* on getting rdtgroup_mutex.
*/
Thread 1 hangs here ---->
wait_event(sub_kn->active == KN_DEACTIVATED_BIAS)
...
rdtgroup_mkdir
rdtgroup_mkdir_mon(parent_kn, prgrp_kn)
mkdir_rdt_prepare(parent_kn, prgrp_kn)
rdtgroup_kn_lock_live(prgrp_kn)
atomic_inc(&rdtgrp->waitcount)
/*
* "c1", prgrp_kn->active--
*
* The active reference on "c1" is
* dropped, but not matching the
* actual active reference taken
* on "mon_groups", thus causing
* Thread 1 to wait forever while
* holding rdtgroup_mutex.
*/
kernfs_break_active_protection(
prgrp_kn)
/*
* Trying to get rdtgroup_mutex
* which is held by Thread 1.
*/
Thread 2 hangs here ----> mutex_lock
...
The problem is that the creation of a subdirectory in the "mon_groups"
directory incorrectly releases the active protection of its parent
directory instead of itself before it starts waiting for rdtgroup_mutex.
This is triggered by the rdtgroup_mkdir() flow calling
rdtgroup_kn_lock_live()/rdtgroup_kn_unlock() with kernfs node of the
parent control group ("c1") as argument. It should be called with kernfs
node "mon_groups" instead. What is currently missing is that the
kn->priv of "mon_groups" is NULL instead of pointing to the rdtgrp.
Fix it by pointing kn->priv to rdtgrp when "mon_groups" is created. Then
it could be passed to rdtgroup_kn_lock_live()/rdtgroup_kn_unlock()
instead. And then it operates on the same rdtgroup structure but handles
the active reference of kernfs node "mon_groups" to prevent deadlock.
The same changes are also made to the "mon_data" directories.
This results in some unused function parameters that will be cleaned up
in follow-up patch as the focus here is on the fix only in support of
backporting efforts.
Fixes: c7d9aac61311 ("x86/intel_rdt/cqm: Add mkdir support for RDT monitoring")
Suggested-by: Reinette Chatre <reinette.chatre(a)intel.com>
Signed-off-by: Xiaochen Shen <xiaochen.shen(a)intel.com>
Signed-off-by: Borislav Petkov <bp(a)suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre(a)intel.com>
Reviewed-by: Tony Luck <tony.luck(a)intel.com>
Acked-by: Thomas Gleixner <tglx(a)linutronix.de>
Cc: stable(a)vger.kernel.org
Link: https://lkml.kernel.org/r/1578500886-21771-4-git-send-email-xiaochen.shen@i…
---
arch/x86/kernel/cpu/resctrl/rdtgroup.c | 16 ++++++++--------
1 file changed, 8 insertions(+), 8 deletions(-)
diff --git a/arch/x86/kernel/cpu/resctrl/rdtgroup.c b/arch/x86/kernel/cpu/resctrl/rdtgroup.c
index caab397..954fd04 100644
--- a/arch/x86/kernel/cpu/resctrl/rdtgroup.c
+++ b/arch/x86/kernel/cpu/resctrl/rdtgroup.c
@@ -1970,7 +1970,7 @@ static int rdt_get_tree(struct fs_context *fc)
if (rdt_mon_capable) {
ret = mongroup_create_dir(rdtgroup_default.kn,
- NULL, "mon_groups",
+ &rdtgroup_default, "mon_groups",
&kn_mongrp);
if (ret < 0)
goto out_info;
@@ -2454,7 +2454,7 @@ static int mkdir_mondata_all(struct kernfs_node *parent_kn,
/*
* Create the mon_data directory first.
*/
- ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
+ ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
if (ret)
return ret;
@@ -2653,7 +2653,7 @@ static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
uint files = 0;
int ret;
- prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
+ prdtgrp = rdtgroup_kn_lock_live(parent_kn);
if (!prdtgrp) {
ret = -ENODEV;
goto out_unlock;
@@ -2726,7 +2726,7 @@ static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
kernfs_activate(kn);
/*
- * The caller unlocks the prgrp_kn upon success.
+ * The caller unlocks the parent_kn upon success.
*/
return 0;
@@ -2737,7 +2737,7 @@ out_destroy:
out_free_rgrp:
kfree(rdtgrp);
out_unlock:
- rdtgroup_kn_unlock(prgrp_kn);
+ rdtgroup_kn_unlock(parent_kn);
return ret;
}
@@ -2775,7 +2775,7 @@ static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
*/
list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
- rdtgroup_kn_unlock(prgrp_kn);
+ rdtgroup_kn_unlock(parent_kn);
return ret;
}
@@ -2818,7 +2818,7 @@ static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
* Create an empty mon_groups directory to hold the subset
* of tasks and cpus to monitor.
*/
- ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
+ ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
if (ret) {
rdt_last_cmd_puts("kernfs subdir error\n");
goto out_del_list;
@@ -2834,7 +2834,7 @@ out_id_free:
out_common_fail:
mkdir_rdt_prepare_clean(rdtgrp);
out_unlock:
- rdtgroup_kn_unlock(prgrp_kn);
+ rdtgroup_kn_unlock(parent_kn);
return ret;
}
Congratulations,
Your email was randomly selected for the 2020 first quarter reimbursement via certified ATM CARD. Please reach Mrs. Sarah Buchiri with your code:U.N.D.C/2020/10/0109 for more information.
Contact Name: Mrs. Sarah Buchiri
Email: sarahbuchiri54(a)gmail.com
Robert Andrew Piper
Assistant Secretary-General for Development Coordination