The patch below does not apply to the 5.10-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-5.10.y
git checkout FETCH_HEAD
git cherry-pick -x 9462e74c5c983cce34019bfb27f734552bebe59f
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2025040821-pleading-cone-6de8@gregkh' --subject-prefix 'PATCH 5.10.y' HEAD^..
Possible dependencies:
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 9462e74c5c983cce34019bfb27f734552bebe59f Mon Sep 17 00:00:00 2001
From: Srinivas Pandruvada <srinivas.pandruvada(a)linux.intel.com>
Date: Fri, 28 Mar 2025 15:47:49 -0700
Subject: [PATCH] platform/x86: ISST: Correct command storage data length
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
After resume/online turbo limit ratio (TRL) is restored partially if
the admin explicitly changed TRL from user space.
A hash table is used to store SST mail box and MSR settings when modified
to restore those settings after resume or online. This uses a struct
isst_cmd field "data" to store these settings. This is a 64 bit field.
But isst_store_new_cmd() is only assigning as u32. This results in
truncation of 32 bits.
Change the argument to u64 from u32.
Fixes: f607874f35cb ("platform/x86: ISST: Restore state on resume")
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada(a)linux.intel.com>
Cc: stable(a)vger.kernel.org
Link: https://lore.kernel.org/r/20250328224749.2691272-1-srinivas.pandruvada@linu…
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen(a)linux.intel.com>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen(a)linux.intel.com>
diff --git a/drivers/platform/x86/intel/speed_select_if/isst_if_common.c b/drivers/platform/x86/intel/speed_select_if/isst_if_common.c
index dbcd3087aaa4..31239a93dd71 100644
--- a/drivers/platform/x86/intel/speed_select_if/isst_if_common.c
+++ b/drivers/platform/x86/intel/speed_select_if/isst_if_common.c
@@ -84,7 +84,7 @@ static DECLARE_HASHTABLE(isst_hash, 8);
static DEFINE_MUTEX(isst_hash_lock);
static int isst_store_new_cmd(int cmd, u32 cpu, int mbox_cmd_type, u32 param,
- u32 data)
+ u64 data)
{
struct isst_cmd *sst_cmd;
The patch below does not apply to the 5.4-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-5.4.y
git checkout FETCH_HEAD
git cherry-pick -x 9462e74c5c983cce34019bfb27f734552bebe59f
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2025040821-underdone-luster-6e41@gregkh' --subject-prefix 'PATCH 5.4.y' HEAD^..
Possible dependencies:
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 9462e74c5c983cce34019bfb27f734552bebe59f Mon Sep 17 00:00:00 2001
From: Srinivas Pandruvada <srinivas.pandruvada(a)linux.intel.com>
Date: Fri, 28 Mar 2025 15:47:49 -0700
Subject: [PATCH] platform/x86: ISST: Correct command storage data length
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
After resume/online turbo limit ratio (TRL) is restored partially if
the admin explicitly changed TRL from user space.
A hash table is used to store SST mail box and MSR settings when modified
to restore those settings after resume or online. This uses a struct
isst_cmd field "data" to store these settings. This is a 64 bit field.
But isst_store_new_cmd() is only assigning as u32. This results in
truncation of 32 bits.
Change the argument to u64 from u32.
Fixes: f607874f35cb ("platform/x86: ISST: Restore state on resume")
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada(a)linux.intel.com>
Cc: stable(a)vger.kernel.org
Link: https://lore.kernel.org/r/20250328224749.2691272-1-srinivas.pandruvada@linu…
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen(a)linux.intel.com>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen(a)linux.intel.com>
diff --git a/drivers/platform/x86/intel/speed_select_if/isst_if_common.c b/drivers/platform/x86/intel/speed_select_if/isst_if_common.c
index dbcd3087aaa4..31239a93dd71 100644
--- a/drivers/platform/x86/intel/speed_select_if/isst_if_common.c
+++ b/drivers/platform/x86/intel/speed_select_if/isst_if_common.c
@@ -84,7 +84,7 @@ static DECLARE_HASHTABLE(isst_hash, 8);
static DEFINE_MUTEX(isst_hash_lock);
static int isst_store_new_cmd(int cmd, u32 cpu, int mbox_cmd_type, u32 param,
- u32 data)
+ u64 data)
{
struct isst_cmd *sst_cmd;
The patch below does not apply to the 5.15-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-5.15.y
git checkout FETCH_HEAD
git cherry-pick -x 9f98a4f4e7216dbe366010b4cdcab6b220f229c4
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2025040846-deafening-unmanaged-f966@gregkh' --subject-prefix 'PATCH 5.15.y' HEAD^..
Possible dependencies:
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 9f98a4f4e7216dbe366010b4cdcab6b220f229c4 Mon Sep 17 00:00:00 2001
From: Vishal Annapurve <vannapurve(a)google.com>
Date: Fri, 28 Feb 2025 01:44:15 +0000
Subject: [PATCH] x86/tdx: Fix arch_safe_halt() execution for TDX VMs
Direct HLT instruction execution causes #VEs for TDX VMs which is routed
to hypervisor via TDCALL. If HLT is executed in STI-shadow, resulting #VE
handler will enable interrupts before TDCALL is routed to hypervisor
leading to missed wakeup events, as current TDX spec doesn't expose
interruptibility state information to allow #VE handler to selectively
enable interrupts.
Commit bfe6ed0c6727 ("x86/tdx: Add HLT support for TDX guests")
prevented the idle routines from executing HLT instruction in STI-shadow.
But it missed the paravirt routine which can be reached via this path
as an example:
kvm_wait() =>
safe_halt() =>
raw_safe_halt() =>
arch_safe_halt() =>
irq.safe_halt() =>
pv_native_safe_halt()
To reliably handle arch_safe_halt() for TDX VMs, introduce explicit
dependency on CONFIG_PARAVIRT and override paravirt halt()/safe_halt()
routines with TDX-safe versions that execute direct TDCALL and needed
interrupt flag updates. Executing direct TDCALL brings in additional
benefit of avoiding HLT related #VEs altogether.
As tested by Ryan Afranji:
"Tested with the specjbb2015 benchmark. It has heavy lock contention which leads
to many halt calls. TDX VMs suffered a poor score before this patchset.
Verified the major performance improvement with this patchset applied."
Fixes: bfe6ed0c6727 ("x86/tdx: Add HLT support for TDX guests")
Signed-off-by: Vishal Annapurve <vannapurve(a)google.com>
Signed-off-by: Ingo Molnar <mingo(a)kernel.org>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov(a)linux.intel.com>
Tested-by: Ryan Afranji <afranji(a)google.com>
Cc: Andy Lutomirski <luto(a)kernel.org>
Cc: Brian Gerst <brgerst(a)gmail.com>
Cc: Juergen Gross <jgross(a)suse.com>
Cc: H. Peter Anvin <hpa(a)zytor.com>
Cc: Linus Torvalds <torvalds(a)linux-foundation.org>
Cc: Josh Poimboeuf <jpoimboe(a)redhat.com>
Cc: stable(a)vger.kernel.org
Link: https://lore.kernel.org/r/20250228014416.3925664-3-vannapurve@google.com
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index 05b4eca156cf..f614c0522a0b 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -878,6 +878,7 @@ config INTEL_TDX_GUEST
depends on X86_64 && CPU_SUP_INTEL
depends on X86_X2APIC
depends on EFI_STUB
+ depends on PARAVIRT
select ARCH_HAS_CC_PLATFORM
select X86_MEM_ENCRYPT
select X86_MCE
diff --git a/arch/x86/coco/tdx/tdx.c b/arch/x86/coco/tdx/tdx.c
index 7772b01ab738..aa0eb4057226 100644
--- a/arch/x86/coco/tdx/tdx.c
+++ b/arch/x86/coco/tdx/tdx.c
@@ -14,6 +14,7 @@
#include <asm/ia32.h>
#include <asm/insn.h>
#include <asm/insn-eval.h>
+#include <asm/paravirt_types.h>
#include <asm/pgtable.h>
#include <asm/set_memory.h>
#include <asm/traps.h>
@@ -398,7 +399,7 @@ static int handle_halt(struct ve_info *ve)
return ve_instr_len(ve);
}
-void __cpuidle tdx_safe_halt(void)
+void __cpuidle tdx_halt(void)
{
const bool irq_disabled = false;
@@ -409,6 +410,16 @@ void __cpuidle tdx_safe_halt(void)
WARN_ONCE(1, "HLT instruction emulation failed\n");
}
+static void __cpuidle tdx_safe_halt(void)
+{
+ tdx_halt();
+ /*
+ * "__cpuidle" section doesn't support instrumentation, so stick
+ * with raw_* variant that avoids tracing hooks.
+ */
+ raw_local_irq_enable();
+}
+
static int read_msr(struct pt_regs *regs, struct ve_info *ve)
{
struct tdx_module_args args = {
@@ -1109,6 +1120,19 @@ void __init tdx_early_init(void)
x86_platform.guest.enc_kexec_begin = tdx_kexec_begin;
x86_platform.guest.enc_kexec_finish = tdx_kexec_finish;
+ /*
+ * Avoid "sti;hlt" execution in TDX guests as HLT induces a #VE that
+ * will enable interrupts before HLT TDCALL invocation if executed
+ * in STI-shadow, possibly resulting in missed wakeup events.
+ *
+ * Modify all possible HLT execution paths to use TDX specific routines
+ * that directly execute TDCALL and toggle the interrupt state as
+ * needed after TDCALL completion. This also reduces HLT related #VEs
+ * in addition to having a reliable halt logic execution.
+ */
+ pv_ops.irq.safe_halt = tdx_safe_halt;
+ pv_ops.irq.halt = tdx_halt;
+
/*
* TDX intercepts the RDMSR to read the X2APIC ID in the parallel
* bringup low level code. That raises #VE which cannot be handled
diff --git a/arch/x86/include/asm/tdx.h b/arch/x86/include/asm/tdx.h
index 65394aa9b49f..4a1922ec80cf 100644
--- a/arch/x86/include/asm/tdx.h
+++ b/arch/x86/include/asm/tdx.h
@@ -58,7 +58,7 @@ void tdx_get_ve_info(struct ve_info *ve);
bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve);
-void tdx_safe_halt(void);
+void tdx_halt(void);
bool tdx_early_handle_ve(struct pt_regs *regs);
@@ -72,7 +72,7 @@ void __init tdx_dump_td_ctls(u64 td_ctls);
#else
static inline void tdx_early_init(void) { };
-static inline void tdx_safe_halt(void) { };
+static inline void tdx_halt(void) { };
static inline bool tdx_early_handle_ve(struct pt_regs *regs) { return false; }
diff --git a/arch/x86/kernel/process.c b/arch/x86/kernel/process.c
index 91f6ff618852..962c3ce39323 100644
--- a/arch/x86/kernel/process.c
+++ b/arch/x86/kernel/process.c
@@ -939,7 +939,7 @@ void __init select_idle_routine(void)
static_call_update(x86_idle, mwait_idle);
} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
pr_info("using TDX aware idle routine\n");
- static_call_update(x86_idle, tdx_safe_halt);
+ static_call_update(x86_idle, tdx_halt);
} else {
static_call_update(x86_idle, default_idle);
}
The patch below does not apply to the 6.1-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-6.1.y
git checkout FETCH_HEAD
git cherry-pick -x 9f98a4f4e7216dbe366010b4cdcab6b220f229c4
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2025040845-quantum-situation-f9b0@gregkh' --subject-prefix 'PATCH 6.1.y' HEAD^..
Possible dependencies:
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 9f98a4f4e7216dbe366010b4cdcab6b220f229c4 Mon Sep 17 00:00:00 2001
From: Vishal Annapurve <vannapurve(a)google.com>
Date: Fri, 28 Feb 2025 01:44:15 +0000
Subject: [PATCH] x86/tdx: Fix arch_safe_halt() execution for TDX VMs
Direct HLT instruction execution causes #VEs for TDX VMs which is routed
to hypervisor via TDCALL. If HLT is executed in STI-shadow, resulting #VE
handler will enable interrupts before TDCALL is routed to hypervisor
leading to missed wakeup events, as current TDX spec doesn't expose
interruptibility state information to allow #VE handler to selectively
enable interrupts.
Commit bfe6ed0c6727 ("x86/tdx: Add HLT support for TDX guests")
prevented the idle routines from executing HLT instruction in STI-shadow.
But it missed the paravirt routine which can be reached via this path
as an example:
kvm_wait() =>
safe_halt() =>
raw_safe_halt() =>
arch_safe_halt() =>
irq.safe_halt() =>
pv_native_safe_halt()
To reliably handle arch_safe_halt() for TDX VMs, introduce explicit
dependency on CONFIG_PARAVIRT and override paravirt halt()/safe_halt()
routines with TDX-safe versions that execute direct TDCALL and needed
interrupt flag updates. Executing direct TDCALL brings in additional
benefit of avoiding HLT related #VEs altogether.
As tested by Ryan Afranji:
"Tested with the specjbb2015 benchmark. It has heavy lock contention which leads
to many halt calls. TDX VMs suffered a poor score before this patchset.
Verified the major performance improvement with this patchset applied."
Fixes: bfe6ed0c6727 ("x86/tdx: Add HLT support for TDX guests")
Signed-off-by: Vishal Annapurve <vannapurve(a)google.com>
Signed-off-by: Ingo Molnar <mingo(a)kernel.org>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov(a)linux.intel.com>
Tested-by: Ryan Afranji <afranji(a)google.com>
Cc: Andy Lutomirski <luto(a)kernel.org>
Cc: Brian Gerst <brgerst(a)gmail.com>
Cc: Juergen Gross <jgross(a)suse.com>
Cc: H. Peter Anvin <hpa(a)zytor.com>
Cc: Linus Torvalds <torvalds(a)linux-foundation.org>
Cc: Josh Poimboeuf <jpoimboe(a)redhat.com>
Cc: stable(a)vger.kernel.org
Link: https://lore.kernel.org/r/20250228014416.3925664-3-vannapurve@google.com
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index 05b4eca156cf..f614c0522a0b 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -878,6 +878,7 @@ config INTEL_TDX_GUEST
depends on X86_64 && CPU_SUP_INTEL
depends on X86_X2APIC
depends on EFI_STUB
+ depends on PARAVIRT
select ARCH_HAS_CC_PLATFORM
select X86_MEM_ENCRYPT
select X86_MCE
diff --git a/arch/x86/coco/tdx/tdx.c b/arch/x86/coco/tdx/tdx.c
index 7772b01ab738..aa0eb4057226 100644
--- a/arch/x86/coco/tdx/tdx.c
+++ b/arch/x86/coco/tdx/tdx.c
@@ -14,6 +14,7 @@
#include <asm/ia32.h>
#include <asm/insn.h>
#include <asm/insn-eval.h>
+#include <asm/paravirt_types.h>
#include <asm/pgtable.h>
#include <asm/set_memory.h>
#include <asm/traps.h>
@@ -398,7 +399,7 @@ static int handle_halt(struct ve_info *ve)
return ve_instr_len(ve);
}
-void __cpuidle tdx_safe_halt(void)
+void __cpuidle tdx_halt(void)
{
const bool irq_disabled = false;
@@ -409,6 +410,16 @@ void __cpuidle tdx_safe_halt(void)
WARN_ONCE(1, "HLT instruction emulation failed\n");
}
+static void __cpuidle tdx_safe_halt(void)
+{
+ tdx_halt();
+ /*
+ * "__cpuidle" section doesn't support instrumentation, so stick
+ * with raw_* variant that avoids tracing hooks.
+ */
+ raw_local_irq_enable();
+}
+
static int read_msr(struct pt_regs *regs, struct ve_info *ve)
{
struct tdx_module_args args = {
@@ -1109,6 +1120,19 @@ void __init tdx_early_init(void)
x86_platform.guest.enc_kexec_begin = tdx_kexec_begin;
x86_platform.guest.enc_kexec_finish = tdx_kexec_finish;
+ /*
+ * Avoid "sti;hlt" execution in TDX guests as HLT induces a #VE that
+ * will enable interrupts before HLT TDCALL invocation if executed
+ * in STI-shadow, possibly resulting in missed wakeup events.
+ *
+ * Modify all possible HLT execution paths to use TDX specific routines
+ * that directly execute TDCALL and toggle the interrupt state as
+ * needed after TDCALL completion. This also reduces HLT related #VEs
+ * in addition to having a reliable halt logic execution.
+ */
+ pv_ops.irq.safe_halt = tdx_safe_halt;
+ pv_ops.irq.halt = tdx_halt;
+
/*
* TDX intercepts the RDMSR to read the X2APIC ID in the parallel
* bringup low level code. That raises #VE which cannot be handled
diff --git a/arch/x86/include/asm/tdx.h b/arch/x86/include/asm/tdx.h
index 65394aa9b49f..4a1922ec80cf 100644
--- a/arch/x86/include/asm/tdx.h
+++ b/arch/x86/include/asm/tdx.h
@@ -58,7 +58,7 @@ void tdx_get_ve_info(struct ve_info *ve);
bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve);
-void tdx_safe_halt(void);
+void tdx_halt(void);
bool tdx_early_handle_ve(struct pt_regs *regs);
@@ -72,7 +72,7 @@ void __init tdx_dump_td_ctls(u64 td_ctls);
#else
static inline void tdx_early_init(void) { };
-static inline void tdx_safe_halt(void) { };
+static inline void tdx_halt(void) { };
static inline bool tdx_early_handle_ve(struct pt_regs *regs) { return false; }
diff --git a/arch/x86/kernel/process.c b/arch/x86/kernel/process.c
index 91f6ff618852..962c3ce39323 100644
--- a/arch/x86/kernel/process.c
+++ b/arch/x86/kernel/process.c
@@ -939,7 +939,7 @@ void __init select_idle_routine(void)
static_call_update(x86_idle, mwait_idle);
} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
pr_info("using TDX aware idle routine\n");
- static_call_update(x86_idle, tdx_safe_halt);
+ static_call_update(x86_idle, tdx_halt);
} else {
static_call_update(x86_idle, default_idle);
}
The patch below does not apply to the 5.15-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-5.15.y
git checkout FETCH_HEAD
git cherry-pick -x 1a15bb8303b6b104e78028b6c68f76a0d4562134
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2025040811-capable-unblock-8997@gregkh' --subject-prefix 'PATCH 5.15.y' HEAD^..
Possible dependencies:
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 1a15bb8303b6b104e78028b6c68f76a0d4562134 Mon Sep 17 00:00:00 2001
From: Shuai Xue <xueshuai(a)linux.alibaba.com>
Date: Wed, 12 Mar 2025 19:28:50 +0800
Subject: [PATCH] x86/mce: use is_copy_from_user() to determine copy-from-user
context
Patch series "mm/hwpoison: Fix regressions in memory failure handling",
v4.
## 1. What am I trying to do:
This patchset resolves two critical regressions related to memory failure
handling that have appeared in the upstream kernel since version 5.17, as
compared to 5.10 LTS.
- copyin case: poison found in user page while kernel copying from user space
- instr case: poison found while instruction fetching in user space
## 2. What is the expected outcome and why
- For copyin case:
Kernel can recover from poison found where kernel is doing get_user() or
copy_from_user() if those places get an error return and the kernel return
-EFAULT to the process instead of crashing. More specifily, MCE handler
checks the fixup handler type to decide whether an in kernel #MC can be
recovered. When EX_TYPE_UACCESS is found, the PC jumps to recovery code
specified in _ASM_EXTABLE_FAULT() and return a -EFAULT to user space.
- For instr case:
If a poison found while instruction fetching in user space, full recovery
is possible. User process takes #PF, Linux allocates a new page and fills
by reading from storage.
## 3. What actually happens and why
- For copyin case: kernel panic since v5.17
Commit 4c132d1d844a ("x86/futex: Remove .fixup usage") introduced a new
extable fixup type, EX_TYPE_EFAULT_REG, and later patches updated the
extable fixup type for copy-from-user operations, changing it from
EX_TYPE_UACCESS to EX_TYPE_EFAULT_REG. It breaks previous EX_TYPE_UACCESS
handling when posion found in get_user() or copy_from_user().
- For instr case: user process is killed by a SIGBUS signal due to #CMCI
and #MCE race
When an uncorrected memory error is consumed there is a race between the
CMCI from the memory controller reporting an uncorrected error with a UCNA
signature, and the core reporting and SRAR signature machine check when
the data is about to be consumed.
### Background: why *UN*corrected errors tied to *C*MCI in Intel platform [1]
Prior to Icelake memory controllers reported patrol scrub events that
detected a previously unseen uncorrected error in memory by signaling a
broadcast machine check with an SRAO (Software Recoverable Action
Optional) signature in the machine check bank. This was overkill because
it's not an urgent problem that no core is on the verge of consuming that
bad data. It's also found that multi SRAO UCE may cause nested MCE
interrupts and finally become an IERR.
Hence, Intel downgrades the machine check bank signature of patrol scrub
from SRAO to UCNA (Uncorrected, No Action required), and signal changed to
#CMCI. Just to add to the confusion, Linux does take an action (in
uc_decode_notifier()) to try to offline the page despite the UC*NA*
signature name.
### Background: why #CMCI and #MCE race when poison is consuming in
Intel platform [1]
Having decided that CMCI/UCNA is the best action for patrol scrub errors,
the memory controller uses it for reads too. But the memory controller is
executing asynchronously from the core, and can't tell the difference
between a "real" read and a speculative read. So it will do CMCI/UCNA if
an error is found in any read.
Thus:
1) Core is clever and thinks address A is needed soon, issues a
speculative read.
2) Core finds it is going to use address A soon after sending the read
request
3) The CMCI from the memory controller is in a race with MCE from the
core that will soon try to retire the load from address A.
Quite often (because speculation has got better) the CMCI from the memory
controller is delivered before the core is committed to the instruction
reading address A, so the interrupt is taken, and Linux offlines the page
(marking it as poison).
## Why user process is killed for instr case
Commit 046545a661af ("mm/hwpoison: fix error page recovered but reported
"not recovered"") tries to fix noise message "Memory error not recovered"
and skips duplicate SIGBUSs due to the race. But it also introduced a bug
that kill_accessing_process() return -EHWPOISON for instr case, as result,
kill_me_maybe() send a SIGBUS to user process.
# 4. The fix, in my opinion, should be:
- For copyin case:
The key point is whether the error context is in a read from user memory.
We do not care about the ex-type if we know its a MOV reading from
userspace.
is_copy_from_user() return true when both of the following two checks are
true:
- the current instruction is copy
- source address is user memory
If copy_user is true, we set
m->kflags |= MCE_IN_KERNEL_COPYIN | MCE_IN_KERNEL_RECOV;
Then do_machine_check() will try fixup_exception() first.
- For instr case: let kill_accessing_process() return 0 to prevent a SIGBUS.
- For patch 3:
The return value of memory_failure() is quite important while discussed
instr case regression with Tony and Miaohe for patch 2, so add comment
about the return value.
This patch (of 3):
Commit 4c132d1d844a ("x86/futex: Remove .fixup usage") introduced a new
extable fixup type, EX_TYPE_EFAULT_REG, and commit 4c132d1d844a
("x86/futex: Remove .fixup usage") updated the extable fixup type for
copy-from-user operations, changing it from EX_TYPE_UACCESS to
EX_TYPE_EFAULT_REG. The error context for copy-from-user operations no
longer functions as an in-kernel recovery context. Consequently, the
error context for copy-from-user operations no longer functions as an
in-kernel recovery context, resulting in kernel panics with the message:
"Machine check: Data load in unrecoverable area of kernel."
To address this, it is crucial to identify if an error context involves a
read operation from user memory. The function is_copy_from_user() can be
utilized to determine:
- the current operation is copy
- when reading user memory
When these conditions are met, is_copy_from_user() will return true,
confirming that it is indeed a direct copy from user memory. This check
is essential for correctly handling the context of errors in these
operations without relying on the extable fixup types that previously
allowed for in-kernel recovery.
So, use is_copy_from_user() to determine if a context is copy user directly.
Link: https://lkml.kernel.org/r/20250312112852.82415-1-xueshuai@linux.alibaba.com
Link: https://lkml.kernel.org/r/20250312112852.82415-2-xueshuai@linux.alibaba.com
Fixes: 4c132d1d844a ("x86/futex: Remove .fixup usage")
Signed-off-by: Shuai Xue <xueshuai(a)linux.alibaba.com>
Suggested-by: Peter Zijlstra <peterz(a)infradead.org>
Acked-by: Borislav Petkov (AMD) <bp(a)alien8.de>
Tested-by: Tony Luck <tony.luck(a)intel.com>
Cc: Baolin Wang <baolin.wang(a)linux.alibaba.com>
Cc: Borislav Betkov <bp(a)alien8.de>
Cc: Catalin Marinas <catalin.marinas(a)arm.com>
Cc: Dave Hansen <dave.hansen(a)linux.intel.com>
Cc: "H. Peter Anvin" <hpa(a)zytor.com>
Cc: Ingo Molnar <mingo(a)redhat.com>
Cc: Josh Poimboeuf <jpoimboe(a)kernel.org>
Cc: Miaohe Lin <linmiaohe(a)huawei.com>
Cc: Naoya Horiguchi <nao.horiguchi(a)gmail.com>
Cc: Ruidong Tian <tianruidong(a)linux.alibaba.com>
Cc: Thomas Gleinxer <tglx(a)linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam(a)amd.com>
Cc: Jane Chu <jane.chu(a)oracle.com>
Cc: Jarkko Sakkinen <jarkko(a)kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron(a)huawei.com>
Cc: <stable(a)vger.kernel.org>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
diff --git a/arch/x86/kernel/cpu/mce/severity.c b/arch/x86/kernel/cpu/mce/severity.c
index dac4d64dfb2a..2235a7477436 100644
--- a/arch/x86/kernel/cpu/mce/severity.c
+++ b/arch/x86/kernel/cpu/mce/severity.c
@@ -300,13 +300,12 @@ static noinstr int error_context(struct mce *m, struct pt_regs *regs)
copy_user = is_copy_from_user(regs);
instrumentation_end();
- switch (fixup_type) {
- case EX_TYPE_UACCESS:
- if (!copy_user)
- return IN_KERNEL;
- m->kflags |= MCE_IN_KERNEL_COPYIN;
- fallthrough;
+ if (copy_user) {
+ m->kflags |= MCE_IN_KERNEL_COPYIN | MCE_IN_KERNEL_RECOV;
+ return IN_KERNEL_RECOV;
+ }
+ switch (fixup_type) {
case EX_TYPE_FAULT_MCE_SAFE:
case EX_TYPE_DEFAULT_MCE_SAFE:
m->kflags |= MCE_IN_KERNEL_RECOV;
The patch below does not apply to the 6.1-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-6.1.y
git checkout FETCH_HEAD
git cherry-pick -x 1a15bb8303b6b104e78028b6c68f76a0d4562134
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2025040808-ammonia-petal-1583@gregkh' --subject-prefix 'PATCH 6.1.y' HEAD^..
Possible dependencies:
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 1a15bb8303b6b104e78028b6c68f76a0d4562134 Mon Sep 17 00:00:00 2001
From: Shuai Xue <xueshuai(a)linux.alibaba.com>
Date: Wed, 12 Mar 2025 19:28:50 +0800
Subject: [PATCH] x86/mce: use is_copy_from_user() to determine copy-from-user
context
Patch series "mm/hwpoison: Fix regressions in memory failure handling",
v4.
## 1. What am I trying to do:
This patchset resolves two critical regressions related to memory failure
handling that have appeared in the upstream kernel since version 5.17, as
compared to 5.10 LTS.
- copyin case: poison found in user page while kernel copying from user space
- instr case: poison found while instruction fetching in user space
## 2. What is the expected outcome and why
- For copyin case:
Kernel can recover from poison found where kernel is doing get_user() or
copy_from_user() if those places get an error return and the kernel return
-EFAULT to the process instead of crashing. More specifily, MCE handler
checks the fixup handler type to decide whether an in kernel #MC can be
recovered. When EX_TYPE_UACCESS is found, the PC jumps to recovery code
specified in _ASM_EXTABLE_FAULT() and return a -EFAULT to user space.
- For instr case:
If a poison found while instruction fetching in user space, full recovery
is possible. User process takes #PF, Linux allocates a new page and fills
by reading from storage.
## 3. What actually happens and why
- For copyin case: kernel panic since v5.17
Commit 4c132d1d844a ("x86/futex: Remove .fixup usage") introduced a new
extable fixup type, EX_TYPE_EFAULT_REG, and later patches updated the
extable fixup type for copy-from-user operations, changing it from
EX_TYPE_UACCESS to EX_TYPE_EFAULT_REG. It breaks previous EX_TYPE_UACCESS
handling when posion found in get_user() or copy_from_user().
- For instr case: user process is killed by a SIGBUS signal due to #CMCI
and #MCE race
When an uncorrected memory error is consumed there is a race between the
CMCI from the memory controller reporting an uncorrected error with a UCNA
signature, and the core reporting and SRAR signature machine check when
the data is about to be consumed.
### Background: why *UN*corrected errors tied to *C*MCI in Intel platform [1]
Prior to Icelake memory controllers reported patrol scrub events that
detected a previously unseen uncorrected error in memory by signaling a
broadcast machine check with an SRAO (Software Recoverable Action
Optional) signature in the machine check bank. This was overkill because
it's not an urgent problem that no core is on the verge of consuming that
bad data. It's also found that multi SRAO UCE may cause nested MCE
interrupts and finally become an IERR.
Hence, Intel downgrades the machine check bank signature of patrol scrub
from SRAO to UCNA (Uncorrected, No Action required), and signal changed to
#CMCI. Just to add to the confusion, Linux does take an action (in
uc_decode_notifier()) to try to offline the page despite the UC*NA*
signature name.
### Background: why #CMCI and #MCE race when poison is consuming in
Intel platform [1]
Having decided that CMCI/UCNA is the best action for patrol scrub errors,
the memory controller uses it for reads too. But the memory controller is
executing asynchronously from the core, and can't tell the difference
between a "real" read and a speculative read. So it will do CMCI/UCNA if
an error is found in any read.
Thus:
1) Core is clever and thinks address A is needed soon, issues a
speculative read.
2) Core finds it is going to use address A soon after sending the read
request
3) The CMCI from the memory controller is in a race with MCE from the
core that will soon try to retire the load from address A.
Quite often (because speculation has got better) the CMCI from the memory
controller is delivered before the core is committed to the instruction
reading address A, so the interrupt is taken, and Linux offlines the page
(marking it as poison).
## Why user process is killed for instr case
Commit 046545a661af ("mm/hwpoison: fix error page recovered but reported
"not recovered"") tries to fix noise message "Memory error not recovered"
and skips duplicate SIGBUSs due to the race. But it also introduced a bug
that kill_accessing_process() return -EHWPOISON for instr case, as result,
kill_me_maybe() send a SIGBUS to user process.
# 4. The fix, in my opinion, should be:
- For copyin case:
The key point is whether the error context is in a read from user memory.
We do not care about the ex-type if we know its a MOV reading from
userspace.
is_copy_from_user() return true when both of the following two checks are
true:
- the current instruction is copy
- source address is user memory
If copy_user is true, we set
m->kflags |= MCE_IN_KERNEL_COPYIN | MCE_IN_KERNEL_RECOV;
Then do_machine_check() will try fixup_exception() first.
- For instr case: let kill_accessing_process() return 0 to prevent a SIGBUS.
- For patch 3:
The return value of memory_failure() is quite important while discussed
instr case regression with Tony and Miaohe for patch 2, so add comment
about the return value.
This patch (of 3):
Commit 4c132d1d844a ("x86/futex: Remove .fixup usage") introduced a new
extable fixup type, EX_TYPE_EFAULT_REG, and commit 4c132d1d844a
("x86/futex: Remove .fixup usage") updated the extable fixup type for
copy-from-user operations, changing it from EX_TYPE_UACCESS to
EX_TYPE_EFAULT_REG. The error context for copy-from-user operations no
longer functions as an in-kernel recovery context. Consequently, the
error context for copy-from-user operations no longer functions as an
in-kernel recovery context, resulting in kernel panics with the message:
"Machine check: Data load in unrecoverable area of kernel."
To address this, it is crucial to identify if an error context involves a
read operation from user memory. The function is_copy_from_user() can be
utilized to determine:
- the current operation is copy
- when reading user memory
When these conditions are met, is_copy_from_user() will return true,
confirming that it is indeed a direct copy from user memory. This check
is essential for correctly handling the context of errors in these
operations without relying on the extable fixup types that previously
allowed for in-kernel recovery.
So, use is_copy_from_user() to determine if a context is copy user directly.
Link: https://lkml.kernel.org/r/20250312112852.82415-1-xueshuai@linux.alibaba.com
Link: https://lkml.kernel.org/r/20250312112852.82415-2-xueshuai@linux.alibaba.com
Fixes: 4c132d1d844a ("x86/futex: Remove .fixup usage")
Signed-off-by: Shuai Xue <xueshuai(a)linux.alibaba.com>
Suggested-by: Peter Zijlstra <peterz(a)infradead.org>
Acked-by: Borislav Petkov (AMD) <bp(a)alien8.de>
Tested-by: Tony Luck <tony.luck(a)intel.com>
Cc: Baolin Wang <baolin.wang(a)linux.alibaba.com>
Cc: Borislav Betkov <bp(a)alien8.de>
Cc: Catalin Marinas <catalin.marinas(a)arm.com>
Cc: Dave Hansen <dave.hansen(a)linux.intel.com>
Cc: "H. Peter Anvin" <hpa(a)zytor.com>
Cc: Ingo Molnar <mingo(a)redhat.com>
Cc: Josh Poimboeuf <jpoimboe(a)kernel.org>
Cc: Miaohe Lin <linmiaohe(a)huawei.com>
Cc: Naoya Horiguchi <nao.horiguchi(a)gmail.com>
Cc: Ruidong Tian <tianruidong(a)linux.alibaba.com>
Cc: Thomas Gleinxer <tglx(a)linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam(a)amd.com>
Cc: Jane Chu <jane.chu(a)oracle.com>
Cc: Jarkko Sakkinen <jarkko(a)kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron(a)huawei.com>
Cc: <stable(a)vger.kernel.org>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
diff --git a/arch/x86/kernel/cpu/mce/severity.c b/arch/x86/kernel/cpu/mce/severity.c
index dac4d64dfb2a..2235a7477436 100644
--- a/arch/x86/kernel/cpu/mce/severity.c
+++ b/arch/x86/kernel/cpu/mce/severity.c
@@ -300,13 +300,12 @@ static noinstr int error_context(struct mce *m, struct pt_regs *regs)
copy_user = is_copy_from_user(regs);
instrumentation_end();
- switch (fixup_type) {
- case EX_TYPE_UACCESS:
- if (!copy_user)
- return IN_KERNEL;
- m->kflags |= MCE_IN_KERNEL_COPYIN;
- fallthrough;
+ if (copy_user) {
+ m->kflags |= MCE_IN_KERNEL_COPYIN | MCE_IN_KERNEL_RECOV;
+ return IN_KERNEL_RECOV;
+ }
+ switch (fixup_type) {
case EX_TYPE_FAULT_MCE_SAFE:
case EX_TYPE_DEFAULT_MCE_SAFE:
m->kflags |= MCE_IN_KERNEL_RECOV;
The patch below does not apply to the 6.6-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-6.6.y
git checkout FETCH_HEAD
git cherry-pick -x 1a15bb8303b6b104e78028b6c68f76a0d4562134
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2025040805-enlisted-regular-7bac@gregkh' --subject-prefix 'PATCH 6.6.y' HEAD^..
Possible dependencies:
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 1a15bb8303b6b104e78028b6c68f76a0d4562134 Mon Sep 17 00:00:00 2001
From: Shuai Xue <xueshuai(a)linux.alibaba.com>
Date: Wed, 12 Mar 2025 19:28:50 +0800
Subject: [PATCH] x86/mce: use is_copy_from_user() to determine copy-from-user
context
Patch series "mm/hwpoison: Fix regressions in memory failure handling",
v4.
## 1. What am I trying to do:
This patchset resolves two critical regressions related to memory failure
handling that have appeared in the upstream kernel since version 5.17, as
compared to 5.10 LTS.
- copyin case: poison found in user page while kernel copying from user space
- instr case: poison found while instruction fetching in user space
## 2. What is the expected outcome and why
- For copyin case:
Kernel can recover from poison found where kernel is doing get_user() or
copy_from_user() if those places get an error return and the kernel return
-EFAULT to the process instead of crashing. More specifily, MCE handler
checks the fixup handler type to decide whether an in kernel #MC can be
recovered. When EX_TYPE_UACCESS is found, the PC jumps to recovery code
specified in _ASM_EXTABLE_FAULT() and return a -EFAULT to user space.
- For instr case:
If a poison found while instruction fetching in user space, full recovery
is possible. User process takes #PF, Linux allocates a new page and fills
by reading from storage.
## 3. What actually happens and why
- For copyin case: kernel panic since v5.17
Commit 4c132d1d844a ("x86/futex: Remove .fixup usage") introduced a new
extable fixup type, EX_TYPE_EFAULT_REG, and later patches updated the
extable fixup type for copy-from-user operations, changing it from
EX_TYPE_UACCESS to EX_TYPE_EFAULT_REG. It breaks previous EX_TYPE_UACCESS
handling when posion found in get_user() or copy_from_user().
- For instr case: user process is killed by a SIGBUS signal due to #CMCI
and #MCE race
When an uncorrected memory error is consumed there is a race between the
CMCI from the memory controller reporting an uncorrected error with a UCNA
signature, and the core reporting and SRAR signature machine check when
the data is about to be consumed.
### Background: why *UN*corrected errors tied to *C*MCI in Intel platform [1]
Prior to Icelake memory controllers reported patrol scrub events that
detected a previously unseen uncorrected error in memory by signaling a
broadcast machine check with an SRAO (Software Recoverable Action
Optional) signature in the machine check bank. This was overkill because
it's not an urgent problem that no core is on the verge of consuming that
bad data. It's also found that multi SRAO UCE may cause nested MCE
interrupts and finally become an IERR.
Hence, Intel downgrades the machine check bank signature of patrol scrub
from SRAO to UCNA (Uncorrected, No Action required), and signal changed to
#CMCI. Just to add to the confusion, Linux does take an action (in
uc_decode_notifier()) to try to offline the page despite the UC*NA*
signature name.
### Background: why #CMCI and #MCE race when poison is consuming in
Intel platform [1]
Having decided that CMCI/UCNA is the best action for patrol scrub errors,
the memory controller uses it for reads too. But the memory controller is
executing asynchronously from the core, and can't tell the difference
between a "real" read and a speculative read. So it will do CMCI/UCNA if
an error is found in any read.
Thus:
1) Core is clever and thinks address A is needed soon, issues a
speculative read.
2) Core finds it is going to use address A soon after sending the read
request
3) The CMCI from the memory controller is in a race with MCE from the
core that will soon try to retire the load from address A.
Quite often (because speculation has got better) the CMCI from the memory
controller is delivered before the core is committed to the instruction
reading address A, so the interrupt is taken, and Linux offlines the page
(marking it as poison).
## Why user process is killed for instr case
Commit 046545a661af ("mm/hwpoison: fix error page recovered but reported
"not recovered"") tries to fix noise message "Memory error not recovered"
and skips duplicate SIGBUSs due to the race. But it also introduced a bug
that kill_accessing_process() return -EHWPOISON for instr case, as result,
kill_me_maybe() send a SIGBUS to user process.
# 4. The fix, in my opinion, should be:
- For copyin case:
The key point is whether the error context is in a read from user memory.
We do not care about the ex-type if we know its a MOV reading from
userspace.
is_copy_from_user() return true when both of the following two checks are
true:
- the current instruction is copy
- source address is user memory
If copy_user is true, we set
m->kflags |= MCE_IN_KERNEL_COPYIN | MCE_IN_KERNEL_RECOV;
Then do_machine_check() will try fixup_exception() first.
- For instr case: let kill_accessing_process() return 0 to prevent a SIGBUS.
- For patch 3:
The return value of memory_failure() is quite important while discussed
instr case regression with Tony and Miaohe for patch 2, so add comment
about the return value.
This patch (of 3):
Commit 4c132d1d844a ("x86/futex: Remove .fixup usage") introduced a new
extable fixup type, EX_TYPE_EFAULT_REG, and commit 4c132d1d844a
("x86/futex: Remove .fixup usage") updated the extable fixup type for
copy-from-user operations, changing it from EX_TYPE_UACCESS to
EX_TYPE_EFAULT_REG. The error context for copy-from-user operations no
longer functions as an in-kernel recovery context. Consequently, the
error context for copy-from-user operations no longer functions as an
in-kernel recovery context, resulting in kernel panics with the message:
"Machine check: Data load in unrecoverable area of kernel."
To address this, it is crucial to identify if an error context involves a
read operation from user memory. The function is_copy_from_user() can be
utilized to determine:
- the current operation is copy
- when reading user memory
When these conditions are met, is_copy_from_user() will return true,
confirming that it is indeed a direct copy from user memory. This check
is essential for correctly handling the context of errors in these
operations without relying on the extable fixup types that previously
allowed for in-kernel recovery.
So, use is_copy_from_user() to determine if a context is copy user directly.
Link: https://lkml.kernel.org/r/20250312112852.82415-1-xueshuai@linux.alibaba.com
Link: https://lkml.kernel.org/r/20250312112852.82415-2-xueshuai@linux.alibaba.com
Fixes: 4c132d1d844a ("x86/futex: Remove .fixup usage")
Signed-off-by: Shuai Xue <xueshuai(a)linux.alibaba.com>
Suggested-by: Peter Zijlstra <peterz(a)infradead.org>
Acked-by: Borislav Petkov (AMD) <bp(a)alien8.de>
Tested-by: Tony Luck <tony.luck(a)intel.com>
Cc: Baolin Wang <baolin.wang(a)linux.alibaba.com>
Cc: Borislav Betkov <bp(a)alien8.de>
Cc: Catalin Marinas <catalin.marinas(a)arm.com>
Cc: Dave Hansen <dave.hansen(a)linux.intel.com>
Cc: "H. Peter Anvin" <hpa(a)zytor.com>
Cc: Ingo Molnar <mingo(a)redhat.com>
Cc: Josh Poimboeuf <jpoimboe(a)kernel.org>
Cc: Miaohe Lin <linmiaohe(a)huawei.com>
Cc: Naoya Horiguchi <nao.horiguchi(a)gmail.com>
Cc: Ruidong Tian <tianruidong(a)linux.alibaba.com>
Cc: Thomas Gleinxer <tglx(a)linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam(a)amd.com>
Cc: Jane Chu <jane.chu(a)oracle.com>
Cc: Jarkko Sakkinen <jarkko(a)kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron(a)huawei.com>
Cc: <stable(a)vger.kernel.org>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
diff --git a/arch/x86/kernel/cpu/mce/severity.c b/arch/x86/kernel/cpu/mce/severity.c
index dac4d64dfb2a..2235a7477436 100644
--- a/arch/x86/kernel/cpu/mce/severity.c
+++ b/arch/x86/kernel/cpu/mce/severity.c
@@ -300,13 +300,12 @@ static noinstr int error_context(struct mce *m, struct pt_regs *regs)
copy_user = is_copy_from_user(regs);
instrumentation_end();
- switch (fixup_type) {
- case EX_TYPE_UACCESS:
- if (!copy_user)
- return IN_KERNEL;
- m->kflags |= MCE_IN_KERNEL_COPYIN;
- fallthrough;
+ if (copy_user) {
+ m->kflags |= MCE_IN_KERNEL_COPYIN | MCE_IN_KERNEL_RECOV;
+ return IN_KERNEL_RECOV;
+ }
+ switch (fixup_type) {
case EX_TYPE_FAULT_MCE_SAFE:
case EX_TYPE_DEFAULT_MCE_SAFE:
m->kflags |= MCE_IN_KERNEL_RECOV;
The patch below does not apply to the 6.1-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-6.1.y
git checkout FETCH_HEAD
git cherry-pick -x 60f3caff1492e5b8616b9578c4bedb5c0a88ed14
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2025040845-repeater-uninvited-9d3b@gregkh' --subject-prefix 'PATCH 6.1.y' HEAD^..
Possible dependencies:
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 60f3caff1492e5b8616b9578c4bedb5c0a88ed14 Mon Sep 17 00:00:00 2001
From: Hengqi Chen <hengqi.chen(a)gmail.com>
Date: Sun, 30 Mar 2025 16:31:09 +0800
Subject: [PATCH] LoongArch: BPF: Don't override subprog's return value
The verifier test `calls: div by 0 in subprog` triggers a panic at the
ld.bu instruction. The ld.bu insn is trying to load byte from memory
address returned by the subprog. The subprog actually set the correct
address at the a5 register (dedicated register for BPF return values).
But at commit 73c359d1d356 ("LoongArch: BPF: Sign-extend return values")
we also sign extended a5 to the a0 register (return value in LoongArch).
For function call insn, we later propagate the a0 register back to a5
register. This is right for native calls but wrong for bpf2bpf calls
which expect zero-extended return value in a5 register. So only move a0
to a5 for native calls (i.e. non-BPF_PSEUDO_CALL).
Cc: stable(a)vger.kernel.org
Fixes: 73c359d1d356 ("LoongArch: BPF: Sign-extend return values")
Signed-off-by: Hengqi Chen <hengqi.chen(a)gmail.com>
Signed-off-by: Huacai Chen <chenhuacai(a)loongson.cn>
diff --git a/arch/loongarch/net/bpf_jit.c b/arch/loongarch/net/bpf_jit.c
index a06bf89fed67..fa1500d4aa3e 100644
--- a/arch/loongarch/net/bpf_jit.c
+++ b/arch/loongarch/net/bpf_jit.c
@@ -907,7 +907,10 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx, bool ext
move_addr(ctx, t1, func_addr);
emit_insn(ctx, jirl, LOONGARCH_GPR_RA, t1, 0);
- move_reg(ctx, regmap[BPF_REG_0], LOONGARCH_GPR_A0);
+
+ if (insn->src_reg != BPF_PSEUDO_CALL)
+ move_reg(ctx, regmap[BPF_REG_0], LOONGARCH_GPR_A0);
+
break;
/* tail call */