On 3/2/19 12:12 AM, gregkh@linuxfoundation.org wrote:
The patch below does not apply to the 3.18-stable tree. If someone wants it applied there, or to any other stable or longterm tree, then please email the backport, including the original git commit id to stable@vger.kernel.org.
From: Mike Kravetz mike.kravetz@oracle.com Date: Mon, 4 Mar 2019 13:00:39 -0800 Subject: [PATCH] hugetlbfs: fix races and page leaks during migration
commit cb6acd01e2e43fd8bad11155752b7699c3d0fb76 upstream.
hugetlb pages should only be migrated if they are 'active'. The routines set/clear_page_huge_active() modify the active state of hugetlb pages. When a new hugetlb page is allocated at fault time, set_page_huge_active is called before the page is locked. Therefore, another thread could race and migrate the page while it is being added to page table by the fault code. This race is somewhat hard to trigger, but can be seen by strategically adding udelay to simulate worst case scheduling behavior. Depending on 'how' the code races, various BUG()s could be triggered.
To address this issue, simply delay the set_page_huge_active call until after the page is successfully added to the page table.
Hugetlb pages can also be leaked at migration time if the pages are associated with a file in an explicitly mounted hugetlbfs filesystem. For example, consider a two node system with 4GB worth of huge pages available. A program mmaps a 2G file in a hugetlbfs filesystem. It then migrates the pages associated with the file from one node to another. When the program exits, huge page counts are as follows:
node0 1024 free_hugepages 1024 nr_hugepages
node1 0 free_hugepages 1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
That is as expected. 2G of huge pages are taken from the free_hugepages counts, and 2G is the size of the file in the explicitly mounted filesystem. If the file is then removed, the counts become:
node0 1024 free_hugepages 1024 nr_hugepages
node1 1024 free_hugepages 1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
Note that the filesystem still shows 2G of pages used, while there actually are no huge pages in use. The only way to 'fix' the filesystem accounting is to unmount the filesystem
If a hugetlb page is associated with an explicitly mounted filesystem, this information in contained in the page_private field. At migration time, this information is not preserved. To fix, simply transfer page_private from old to new page at migration time if necessary.
There is a related race with removing a huge page from a file and migration. When a huge page is removed from the pagecache, the page_mapping() field is cleared, yet page_private remains set until the page is actually freed by free_huge_page(). A page could be migrated while in this state. However, since page_mapping() is not set the hugetlbfs specific routine to transfer page_private is not called and we leak the page count in the filesystem. To fix, check for this condition before migrating a huge page. If the condition is detected, return EBUSY for the page.
Cc: stable@vger.kernel.org Fixes: bcc54222309c ("mm: hugetlb: introduce page_huge_active") Signed-off-by: Mike Kravetz mike.kravetz@oracle.com --- fs/hugetlbfs/inode.c | 12 ++++++++++++ mm/hugetlb.c | 14 ++++++++++++-- mm/migrate.c | 11 +++++++++++ 3 files changed, 35 insertions(+), 2 deletions(-)
diff --git a/fs/hugetlbfs/inode.c b/fs/hugetlbfs/inode.c index 148c4e9cf22f..ec1ed7e4b8f3 100644 --- a/fs/hugetlbfs/inode.c +++ b/fs/hugetlbfs/inode.c @@ -609,6 +609,18 @@ static int hugetlbfs_migrate_page(struct address_space *mapping, rc = migrate_huge_page_move_mapping(mapping, newpage, page); if (rc != MIGRATEPAGE_SUCCESS) return rc; + + /* + * page_private is subpool pointer in hugetlb pages. Transfer to + * new page. PagePrivate is not associated with page_private for + * hugetlb pages and can not be set here as only page_huge_active + * pages can be migrated. + */ + if (page_private(page)) { + set_page_private(newpage, page_private(page)); + set_page_private(page, 0); + } + migrate_page_copy(newpage, page);
return MIGRATEPAGE_SUCCESS; diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 73b820981e2e..2253240b7cdb 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -2938,7 +2938,6 @@ retry_avoidcopy: copy_user_huge_page(new_page, old_page, address, vma, pages_per_huge_page(h)); __SetPageUptodate(new_page); - set_page_huge_active(new_page);
mmun_start = address & huge_page_mask(h); mmun_end = mmun_start + huge_page_size(h); @@ -2959,6 +2958,7 @@ retry_avoidcopy: make_huge_pte(vma, new_page, 1)); page_remove_rmap(old_page); hugepage_add_new_anon_rmap(new_page, vma, address); + set_page_huge_active(new_page); /* Make the old page be freed below */ new_page = old_page; } @@ -3017,6 +3017,7 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, struct page *page; pte_t new_pte; spinlock_t *ptl; + bool new_page = false;
/* * Currently, we are forced to kill the process in the event the @@ -3050,7 +3051,7 @@ retry: } clear_huge_page(page, address, pages_per_huge_page(h)); __SetPageUptodate(page); - set_page_huge_active(page); + new_page = true;
if (vma->vm_flags & VM_MAYSHARE) { int err; @@ -3126,6 +3127,15 @@ retry: }
spin_unlock(ptl); + + /* + * Only make newly allocated pages active. Existing pages found + * in the pagecache could be !page_huge_active() if they have been + * isolated for migration. + */ + if (new_page) + set_page_huge_active(page); + unlock_page(page); out: return ret; diff --git a/mm/migrate.c b/mm/migrate.c index 0e80c254d77a..c6e965f68269 100644 --- a/mm/migrate.c +++ b/mm/migrate.c @@ -1050,6 +1050,16 @@ static int unmap_and_move_huge_page(new_page_t get_new_page, lock_page(hpage); }
+ /* + * Check for pages which are in the process of being freed. Without + * page_mapping() set, hugetlbfs specific move page routine will not + * be called and we could leak usage counts for subpools. + */ + if (page_private(hpage) && !page_mapping(hpage)) { + rc = -EBUSY; + goto out_unlock; + } + if (PageAnon(hpage)) anon_vma = page_get_anon_vma(hpage);
@@ -1067,6 +1077,7 @@ static int unmap_and_move_huge_page(new_page_t get_new_page, if (rc == MIGRATEPAGE_SUCCESS) hugetlb_cgroup_migrate(hpage, new_hpage);
+out_unlock: unlock_page(hpage); out: if (rc != -EAGAIN)