On Mon, Sep 17, 2018 at 5:42 PM, Greg Kroah-Hartman gregkh@linuxfoundation.org wrote:
4.14-stable review patch. If anyone has any objections, please let me know.
From: Eric Dumazet edumazet@google.com
commit bffa72cf7f9df842f0016ba03586039296b4caaf upstream
skb->rbnode shares space with skb->next, skb->prev and skb->tstamp
Current uses (TCP receive ofo queue and netem) need to save/restore tstamp, while skb->dev is either NULL (TCP) or a constant for a given queue (netem).
Since we plan using an RB tree for TCP retransmit queue to speedup SACK processing with large BDP, this patch exchanges skb->dev and skb->tstamp.
This saves some overhead in both TCP and netem.
v2: removes the swtstamp field from struct tcp_skb_cb
Signed-off-by: Eric Dumazet edumazet@google.com Cc: Soheil Hassas Yeganeh soheil@google.com Cc: Wei Wang weiwan@google.com Cc: Willem de Bruijn willemb@google.com Acked-by: Soheil Hassas Yeganeh soheil@google.com Signed-off-by: David S. Miller davem@davemloft.net Signed-off-by: Greg Kroah-Hartman gregkh@linuxfoundation.org
include/linux/skbuff.h | 24 ++-- include/net/inet_frag.h | 3 net/ipv4/inet_fragment.c | 14 +- net/ipv4/ip_fragment.c | 182 +++++++++++++++++--------------- net/ipv6/netfilter/nf_conntrack_reasm.c | 1 net/ipv6/reassembly.c | 1 6 files changed, 128 insertions(+), 97 deletions(-)
--- a/include/linux/skbuff.h +++ b/include/linux/skbuff.h @@ -663,23 +663,27 @@ struct sk_buff { struct sk_buff *prev;
union {
ktime_t tstamp;
u64 skb_mstamp;
struct net_device *dev;
/* Some protocols might use this space to store information,
* while device pointer would be NULL.
* UDP receive path is one user.
*/
unsigned long dev_scratch; }; };
struct rb_node rbnode; /* used in netem & tcp stack */
struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
struct list_head list; };
struct sock *sk; union {
struct net_device *dev;
/* Some protocols might use this space to store information,
* while device pointer would be NULL.
* UDP receive path is one user.
*/
unsigned long dev_scratch;
struct sock *sk; int ip_defrag_offset; };
union {
ktime_t tstamp;
u64 skb_mstamp;
}; /* * This is the control buffer. It is free to use for every * layer. Please put your private variables there. If you
--- a/include/net/inet_frag.h +++ b/include/net/inet_frag.h @@ -75,7 +75,8 @@ struct inet_frag_queue { struct timer_list timer; spinlock_t lock; refcount_t refcnt;
struct sk_buff *fragments;
struct sk_buff *fragments; /* Used in IPv6. */
struct rb_root rb_fragments; /* Used in IPv4. */ struct sk_buff *fragments_tail; ktime_t stamp; int len;
--- a/net/ipv4/inet_fragment.c +++ b/net/ipv4/inet_fragment.c @@ -136,12 +136,16 @@ void inet_frag_destroy(struct inet_frag_ fp = q->fragments; nf = q->net; f = nf->f;
while (fp) {
struct sk_buff *xp = fp->next;
if (fp) {
do {
struct sk_buff *xp = fp->next;
sum_truesize += fp->truesize;
kfree_skb(fp);
fp = xp;
sum_truesize += fp->truesize;
kfree_skb(fp);
fp = xp;
} while (fp);
} else {
sum_truesize = skb_rbtree_purge(&q->rb_fragments); } sum = sum_truesize + f->qsize;
--- a/net/ipv4/ip_fragment.c +++ b/net/ipv4/ip_fragment.c @@ -136,7 +136,7 @@ static void ip_expire(struct timer_list { struct inet_frag_queue *frag = from_timer(frag, t, timer); const struct iphdr *iph;
struct sk_buff *head;
struct sk_buff *head = NULL; struct net *net; struct ipq *qp; int err;
@@ -152,14 +152,31 @@ static void ip_expire(struct timer_list
ipq_kill(qp); __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
head = qp->q.fragments;
__IP_INC_STATS(net, IPSTATS_MIB_REASMTIMEOUT);
if (!(qp->q.flags & INET_FRAG_FIRST_IN) || !head)
if (!qp->q.flags & INET_FRAG_FIRST_IN) goto out;
/* sk_buff::dev and sk_buff::rbnode are unionized. So we
* pull the head out of the tree in order to be able to
* deal with head->dev.
*/
if (qp->q.fragments) {
head = qp->q.fragments;
qp->q.fragments = head->next;
} else {
head = skb_rb_first(&qp->q.rb_fragments);
if (!head)
goto out;
rb_erase(&head->rbnode, &qp->q.rb_fragments);
memset(&head->rbnode, 0, sizeof(head->rbnode));
barrier();
}
if (head == qp->q.fragments_tail)
qp->q.fragments_tail = NULL;
sub_frag_mem_limit(qp->q.net, head->truesize);
head->dev = dev_get_by_index_rcu(net, qp->iif); if (!head->dev) goto out;
@@ -179,16 +196,16 @@ static void ip_expire(struct timer_list (skb_rtable(head)->rt_type != RTN_LOCAL)) goto out;
skb_get(head); spin_unlock(&qp->q.lock); icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
kfree_skb(head); goto out_rcu_unlock;
out: spin_unlock(&qp->q.lock); out_rcu_unlock: rcu_read_unlock();
if (head)
kfree_skb(head); ipq_put(qp);
}
@@ -231,7 +248,7 @@ static int ip_frag_too_far(struct ipq *q end = atomic_inc_return(&peer->rid); qp->rid = end;
rc = qp->q.fragments && (end - start) > max;
rc = qp->q.fragments_tail && (end - start) > max; if (rc) { struct net *net;
@@ -245,7 +262,6 @@ static int ip_frag_too_far(struct ipq *q
static int ip_frag_reinit(struct ipq *qp) {
struct sk_buff *fp; unsigned int sum_truesize = 0; if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
@@ -253,20 +269,14 @@ static int ip_frag_reinit(struct ipq *qp return -ETIMEDOUT; }
fp = qp->q.fragments;
do {
struct sk_buff *xp = fp->next;
sum_truesize += fp->truesize;
kfree_skb(fp);
fp = xp;
} while (fp);
sum_truesize = skb_rbtree_purge(&qp->q.rb_fragments); sub_frag_mem_limit(qp->q.net, sum_truesize); qp->q.flags = 0; qp->q.len = 0; qp->q.meat = 0; qp->q.fragments = NULL;
qp->q.rb_fragments = RB_ROOT; qp->q.fragments_tail = NULL; qp->iif = 0; qp->ecn = 0;
@@ -278,7 +288,8 @@ static int ip_frag_reinit(struct ipq *qp static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) { struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
struct sk_buff *prev, *next;
struct rb_node **rbn, *parent;
struct sk_buff *skb1; struct net_device *dev; unsigned int fragsize; int flags, offset;
@@ -341,58 +352,58 @@ static int ip_frag_queue(struct ipq *qp, if (err) goto err;
/* Find out which fragments are in front and at the back of us
* in the chain of fragments so far. We must know where to put
* this fragment, right?
*/
prev = qp->q.fragments_tail;
if (!prev || prev->ip_defrag_offset < offset) {
next = NULL;
goto found;
}
prev = NULL;
for (next = qp->q.fragments; next != NULL; next = next->next) {
if (next->ip_defrag_offset >= offset)
break; /* bingo! */
prev = next;
}
/* Note : skb->rbnode and skb->dev share the same location. */
dev = skb->dev;
/* Makes sure compiler wont do silly aliasing games */
barrier();
-found: /* RFC5722, Section 4, amended by Errata ID : 3089 * When reassembling an IPv6 datagram, if * one or more its constituent fragments is determined to be an * overlapping fragment, the entire datagram (and any constituent * fragments) MUST be silently discarded. *
* We do the same here for IPv4.
* We do the same here for IPv4 (and increment an snmp counter). */
/* Is there an overlap with the previous fragment? */
if (prev &&
(prev->ip_defrag_offset + prev->len) > offset)
goto discard_qp;
/* Is there an overlap with the next fragment? */
if (next && next->ip_defrag_offset < end)
goto discard_qp;
/* Find out where to put this fragment. */
skb1 = qp->q.fragments_tail;
if (!skb1) {
/* This is the first fragment we've received. */
rb_link_node(&skb->rbnode, NULL, &qp->q.rb_fragments.rb_node);
qp->q.fragments_tail = skb;
} else if ((skb1->ip_defrag_offset + skb1->len) < end) {
/* This is the common/special case: skb goes to the end. */
/* Detect and discard overlaps. */
if (offset < (skb1->ip_defrag_offset + skb1->len))
goto discard_qp;
/* Insert after skb1. */
rb_link_node(&skb->rbnode, &skb1->rbnode, &skb1->rbnode.rb_right);
qp->q.fragments_tail = skb;
} else {
/* Binary search. Note that skb can become the first fragment, but
* not the last (covered above). */
rbn = &qp->q.rb_fragments.rb_node;
do {
parent = *rbn;
skb1 = rb_to_skb(parent);
if (end <= skb1->ip_defrag_offset)
rbn = &parent->rb_left;
else if (offset >= skb1->ip_defrag_offset + skb1->len)
rbn = &parent->rb_right;
else /* Found an overlap with skb1. */
goto discard_qp;
} while (*rbn);
/* Here we have parent properly set, and rbn pointing to
* one of its NULL left/right children. Insert skb. */
rb_link_node(&skb->rbnode, parent, rbn);
}
rb_insert_color(&skb->rbnode, &qp->q.rb_fragments);
/* Note : skb->ip_defrag_offset and skb->dev share the same location */
dev = skb->dev; if (dev) qp->iif = dev->ifindex;
/* Makes sure compiler wont do silly aliasing games */
barrier(); skb->ip_defrag_offset = offset;
/* Insert this fragment in the chain of fragments. */
skb->next = next;
if (!next)
qp->q.fragments_tail = skb;
if (prev)
prev->next = skb;
else
qp->q.fragments = skb;
qp->q.stamp = skb->tstamp; qp->q.meat += skb->len; qp->ecn |= ecn;
@@ -414,7 +425,7 @@ found: unsigned long orefdst = skb->_skb_refdst;
skb->_skb_refdst = 0UL;
err = ip_frag_reasm(qp, prev, dev);
err = ip_frag_reasm(qp, skb, dev); skb->_skb_refdst = orefdst; return err; }
@@ -431,15 +442,15 @@ err: return err; }
/* Build a new IP datagram from all its fragments. */
-static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, +static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb, struct net_device *dev) { struct net *net = container_of(qp->q.net, struct net, ipv4.frags); struct iphdr *iph;
struct sk_buff *fp, *head = qp->q.fragments;
struct sk_buff *fp, *head = skb_rb_first(&qp->q.rb_fragments);
struct sk_buff **nextp; /* To build frag_list. */
struct rb_node *rbn; int len; int ihlen; int err;
@@ -453,25 +464,20 @@ static int ip_frag_reasm(struct ipq *qp, goto out_fail; } /* Make the one we just received the head. */
if (prev) {
head = prev->next;
fp = skb_clone(head, GFP_ATOMIC);
if (head != skb) {
fp = skb_clone(skb, GFP_ATOMIC); if (!fp) goto out_nomem;
fp->next = head->next;
if (!fp->next)
rb_replace_node(&skb->rbnode, &fp->rbnode, &qp->q.rb_fragments);
if (qp->q.fragments_tail == skb) qp->q.fragments_tail = fp;
prev->next = fp;
skb_morph(head, qp->q.fragments);
head->next = qp->q.fragments->next;
consume_skb(qp->q.fragments);
qp->q.fragments = head;
skb_morph(skb, head);
rb_replace_node(&head->rbnode, &skb->rbnode,
&qp->q.rb_fragments);
consume_skb(head);
head = skb; }
WARN_ON(!head); WARN_ON(head->ip_defrag_offset != 0); /* Allocate a new buffer for the datagram. */
@@ -496,24 +502,35 @@ static int ip_frag_reasm(struct ipq *qp, clone = alloc_skb(0, GFP_ATOMIC); if (!clone) goto out_nomem;
clone->next = head->next;
head->next = clone; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_frag_list_init(head); for (i = 0; i < skb_shinfo(head)->nr_frags; i++) plen += skb_frag_size(&skb_shinfo(head)->frags[i]); clone->len = clone->data_len = head->data_len - plen;
head->data_len -= clone->len;
head->len -= clone->len;
skb->truesize += clone->truesize; clone->csum = 0;bffa72cf7f9df clone->ip_summed = head->ip_summed; add_frag_mem_limit(qp->q.net, clone->truesize);
skb_shinfo(head)->frag_list = clone;
nextp = &clone->next;
} else {
nextp = &skb_shinfo(head)->frag_list; }
skb_shinfo(head)->frag_list = head->next; skb_push(head, head->data - skb_network_header(head));
for (fp=head->next; fp; fp = fp->next) {
/* Traverse the tree in order, to build frag_list. */
rbn = rb_next(&head->rbnode);
rb_erase(&head->rbnode, &qp->q.rb_fragments);
while (rbn) {
struct rb_node *rbnext = rb_next(rbn);
fp = rb_to_skb(rbn);
rb_erase(rbn, &qp->q.rb_fragments);
rbn = rbnext;
*nextp = fp;
nextp = &fp->next;
fp->prev = NULL;
memset(&fp->rbnode, 0, sizeof(fp->rbnode)); head->data_len += fp->len; head->len += fp->len; if (head->ip_summed != fp->ip_summed)
@@ -524,7 +541,9 @@ static int ip_frag_reasm(struct ipq *qp, } sub_frag_mem_limit(qp->q.net, head->truesize);
*nextp = NULL; head->next = NULL;
head->prev = NULL; head->dev = dev; head->tstamp = qp->q.stamp; IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
@@ -552,6 +571,7 @@ static int ip_frag_reasm(struct ipq *qp,
__IP_INC_STATS(net, IPSTATS_MIB_REASMOKS); qp->q.fragments = NULL;
qp->q.rb_fragments = RB_ROOT; qp->q.fragments_tail = NULL; return 0;
--- a/net/ipv6/netfilter/nf_conntrack_reasm.c +++ b/net/ipv6/netfilter/nf_conntrack_reasm.c @@ -471,6 +471,7 @@ nf_ct_frag6_reasm(struct frag_queue *fq, head->csum);
fq->q.fragments = NULL;
fq->q.rb_fragments = RB_ROOT; fq->q.fragments_tail = NULL; return true;
--- a/net/ipv6/reassembly.c +++ b/net/ipv6/reassembly.c @@ -472,6 +472,7 @@ static int ip6_frag_reasm(struct frag_qu __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMOKS); rcu_read_unlock(); fq->q.fragments = NULL;
fq->q.rb_fragments = RB_ROOT; fq->q.fragments_tail = NULL; return 1;
I'm getting a kernel panic on the >=4.14.71 stable kernels, and I've isolated the problem back to this patch.
My 4.18.11 kernel seems to be OK.
Whenever I inject a delay into the interface with iproute2 tools, I get a panic.
Example command: tc qdisc add dev eth0 root netem delay 35ms
The RIP is pointing at netif_skb_features+0x31/0x230
My efforts to get a transmittable copy of the panic have been thwarted.
There's some confusion between this patch and the upstream patch refered to in the commit message
The upstream commit patches net/sched/sch_netem.c which isn't even touched in this commit.
Althought the commit messages are the same, the two patches seem to have a different purpose.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/ne...
The commit message seems more relavant to this patch.
The upstream commit bffa72cf7f9df842f0016ba03586039296b4caaf has not yet been applied to the stable tree.
I decided to roll the dice, and apply the upstream patch bffa72cf7f9df842f0016ba03586039296b4caaf (it's been in the main kernel tree just over a year).
When I manually patch my 4.14.74 kernel with bffa72cf7f9df842f0016ba03586039296b4caaf, my panic seems to be solved.
I'm uncertain if this is the proper solution, but I hope this points in the direction of the issue.