The patch below does not apply to the 6.1-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-6.1.y
git checkout FETCH_HEAD
git cherry-pick -x d4202e66a4b1fe6968f17f9f09bbc30d08f028a1
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2024061315-breeding-carry-caf4@gregkh' --subject-prefix 'PATCH 6.1.y' HEAD^..
Possible dependencies:
d4202e66a4b1 ("selftests/mm: compaction_test: fix bogus test success on Aarch64")
f3b7568c4942 ("selftests/mm: log a consistent test name for check_compaction")
9a21701edc41 ("selftests/mm: conform test to TAP format output")
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From d4202e66a4b1fe6968f17f9f09bbc30d08f028a1 Mon Sep 17 00:00:00 2001
From: Dev Jain <dev.jain(a)arm.com>
Date: Tue, 21 May 2024 13:13:56 +0530
Subject: [PATCH] selftests/mm: compaction_test: fix bogus test success on
Aarch64
Patch series "Fixes for compaction_test", v2.
The compaction_test memory selftest introduces fragmentation in memory
and then tries to allocate as many hugepages as possible. This series
addresses some problems.
On Aarch64, if nr_hugepages == 0, then the test trivially succeeds since
compaction_index becomes 0, which is less than 3, due to no division by
zero exception being raised. We fix that by checking for division by
zero.
Secondly, correctly set the number of hugepages to zero before trying
to set a large number of them.
Now, consider a situation in which, at the start of the test, a non-zero
number of hugepages have been already set (while running the entire
selftests/mm suite, or manually by the admin). The test operates on 80%
of memory to avoid OOM-killer invocation, and because some memory is
already blocked by hugepages, it would increase the chance of OOM-killing.
Also, since mem_free used in check_compaction() is the value before we
set nr_hugepages to zero, the chance that the compaction_index will
be small is very high if the preset nr_hugepages was high, leading to a
bogus test success.
This patch (of 3):
Currently, if at runtime we are not able to allocate a huge page, the test
will trivially pass on Aarch64 due to no exception being raised on
division by zero while computing compaction_index. Fix that by checking
for nr_hugepages == 0. Anyways, in general, avoid a division by zero by
exiting the program beforehand. While at it, fix a typo, and handle the
case where the number of hugepages may overflow an integer.
Link: https://lkml.kernel.org/r/20240521074358.675031-1-dev.jain@arm.com
Link: https://lkml.kernel.org/r/20240521074358.675031-2-dev.jain@arm.com
Fixes: bd67d5c15cc1 ("Test compaction of mlocked memory")
Signed-off-by: Dev Jain <dev.jain(a)arm.com>
Cc: Anshuman Khandual <anshuman.khandual(a)arm.com>
Cc: Shuah Khan <shuah(a)kernel.org>
Cc: Sri Jayaramappa <sjayaram(a)akamai.com>
Cc: <stable(a)vger.kernel.org>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
diff --git a/tools/testing/selftests/mm/compaction_test.c b/tools/testing/selftests/mm/compaction_test.c
index 4f42eb7d7636..0b249a06a60b 100644
--- a/tools/testing/selftests/mm/compaction_test.c
+++ b/tools/testing/selftests/mm/compaction_test.c
@@ -82,12 +82,13 @@ int prereq(void)
return -1;
}
-int check_compaction(unsigned long mem_free, unsigned int hugepage_size)
+int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
{
+ unsigned long nr_hugepages_ul;
int fd, ret = -1;
int compaction_index = 0;
- char initial_nr_hugepages[10] = {0};
- char nr_hugepages[10] = {0};
+ char initial_nr_hugepages[20] = {0};
+ char nr_hugepages[20] = {0};
/* We want to test with 80% of available memory. Else, OOM killer comes
in to play */
@@ -134,7 +135,12 @@ int check_compaction(unsigned long mem_free, unsigned int hugepage_size)
/* We should have been able to request at least 1/3 rd of the memory in
huge pages */
- compaction_index = mem_free/(atoi(nr_hugepages) * hugepage_size);
+ nr_hugepages_ul = strtoul(nr_hugepages, NULL, 10);
+ if (!nr_hugepages_ul) {
+ ksft_print_msg("ERROR: No memory is available as huge pages\n");
+ goto close_fd;
+ }
+ compaction_index = mem_free/(nr_hugepages_ul * hugepage_size);
lseek(fd, 0, SEEK_SET);
@@ -145,11 +151,11 @@ int check_compaction(unsigned long mem_free, unsigned int hugepage_size)
goto close_fd;
}
- ksft_print_msg("Number of huge pages allocated = %d\n",
- atoi(nr_hugepages));
+ ksft_print_msg("Number of huge pages allocated = %lu\n",
+ nr_hugepages_ul);
if (compaction_index > 3) {
- ksft_print_msg("ERROR: Less that 1/%d of memory is available\n"
+ ksft_print_msg("ERROR: Less than 1/%d of memory is available\n"
"as huge pages\n", compaction_index);
goto close_fd;
}
The patch below does not apply to the 6.6-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-6.6.y
git checkout FETCH_HEAD
git cherry-pick -x d4202e66a4b1fe6968f17f9f09bbc30d08f028a1
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2024061314-unlit-filled-c396@gregkh' --subject-prefix 'PATCH 6.6.y' HEAD^..
Possible dependencies:
d4202e66a4b1 ("selftests/mm: compaction_test: fix bogus test success on Aarch64")
f3b7568c4942 ("selftests/mm: log a consistent test name for check_compaction")
9a21701edc41 ("selftests/mm: conform test to TAP format output")
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From d4202e66a4b1fe6968f17f9f09bbc30d08f028a1 Mon Sep 17 00:00:00 2001
From: Dev Jain <dev.jain(a)arm.com>
Date: Tue, 21 May 2024 13:13:56 +0530
Subject: [PATCH] selftests/mm: compaction_test: fix bogus test success on
Aarch64
Patch series "Fixes for compaction_test", v2.
The compaction_test memory selftest introduces fragmentation in memory
and then tries to allocate as many hugepages as possible. This series
addresses some problems.
On Aarch64, if nr_hugepages == 0, then the test trivially succeeds since
compaction_index becomes 0, which is less than 3, due to no division by
zero exception being raised. We fix that by checking for division by
zero.
Secondly, correctly set the number of hugepages to zero before trying
to set a large number of them.
Now, consider a situation in which, at the start of the test, a non-zero
number of hugepages have been already set (while running the entire
selftests/mm suite, or manually by the admin). The test operates on 80%
of memory to avoid OOM-killer invocation, and because some memory is
already blocked by hugepages, it would increase the chance of OOM-killing.
Also, since mem_free used in check_compaction() is the value before we
set nr_hugepages to zero, the chance that the compaction_index will
be small is very high if the preset nr_hugepages was high, leading to a
bogus test success.
This patch (of 3):
Currently, if at runtime we are not able to allocate a huge page, the test
will trivially pass on Aarch64 due to no exception being raised on
division by zero while computing compaction_index. Fix that by checking
for nr_hugepages == 0. Anyways, in general, avoid a division by zero by
exiting the program beforehand. While at it, fix a typo, and handle the
case where the number of hugepages may overflow an integer.
Link: https://lkml.kernel.org/r/20240521074358.675031-1-dev.jain@arm.com
Link: https://lkml.kernel.org/r/20240521074358.675031-2-dev.jain@arm.com
Fixes: bd67d5c15cc1 ("Test compaction of mlocked memory")
Signed-off-by: Dev Jain <dev.jain(a)arm.com>
Cc: Anshuman Khandual <anshuman.khandual(a)arm.com>
Cc: Shuah Khan <shuah(a)kernel.org>
Cc: Sri Jayaramappa <sjayaram(a)akamai.com>
Cc: <stable(a)vger.kernel.org>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
diff --git a/tools/testing/selftests/mm/compaction_test.c b/tools/testing/selftests/mm/compaction_test.c
index 4f42eb7d7636..0b249a06a60b 100644
--- a/tools/testing/selftests/mm/compaction_test.c
+++ b/tools/testing/selftests/mm/compaction_test.c
@@ -82,12 +82,13 @@ int prereq(void)
return -1;
}
-int check_compaction(unsigned long mem_free, unsigned int hugepage_size)
+int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
{
+ unsigned long nr_hugepages_ul;
int fd, ret = -1;
int compaction_index = 0;
- char initial_nr_hugepages[10] = {0};
- char nr_hugepages[10] = {0};
+ char initial_nr_hugepages[20] = {0};
+ char nr_hugepages[20] = {0};
/* We want to test with 80% of available memory. Else, OOM killer comes
in to play */
@@ -134,7 +135,12 @@ int check_compaction(unsigned long mem_free, unsigned int hugepage_size)
/* We should have been able to request at least 1/3 rd of the memory in
huge pages */
- compaction_index = mem_free/(atoi(nr_hugepages) * hugepage_size);
+ nr_hugepages_ul = strtoul(nr_hugepages, NULL, 10);
+ if (!nr_hugepages_ul) {
+ ksft_print_msg("ERROR: No memory is available as huge pages\n");
+ goto close_fd;
+ }
+ compaction_index = mem_free/(nr_hugepages_ul * hugepage_size);
lseek(fd, 0, SEEK_SET);
@@ -145,11 +151,11 @@ int check_compaction(unsigned long mem_free, unsigned int hugepage_size)
goto close_fd;
}
- ksft_print_msg("Number of huge pages allocated = %d\n",
- atoi(nr_hugepages));
+ ksft_print_msg("Number of huge pages allocated = %lu\n",
+ nr_hugepages_ul);
if (compaction_index > 3) {
- ksft_print_msg("ERROR: Less that 1/%d of memory is available\n"
+ ksft_print_msg("ERROR: Less than 1/%d of memory is available\n"
"as huge pages\n", compaction_index);
goto close_fd;
}
The patch below does not apply to the 4.19-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-4.19.y
git checkout FETCH_HEAD
git cherry-pick -x fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2024061355-send-backwash-9965@gregkh' --subject-prefix 'PATCH 4.19.y' HEAD^..
Possible dependencies:
fb9293b6b015 ("selftests/mm: compaction_test: fix bogus test success and reduce probability of OOM-killer invocation")
9ad665ef55ea ("selftests/mm: compaction_test: fix incorrect write of zero to nr_hugepages")
d4202e66a4b1 ("selftests/mm: compaction_test: fix bogus test success on Aarch64")
69e545edbe8b ("selftests/mm: ksft_exit functions do not return")
f3b7568c4942 ("selftests/mm: log a consistent test name for check_compaction")
9c1490d911f8 ("selftests/mm: log skipped compaction test as a skip")
8c9eea721a98 ("selftests/mm: skip test if application doesn't has root privileges")
9a21701edc41 ("selftests/mm: conform test to TAP format output")
cb6e7cae1886 ("selftests/mm: gup_test: conform test to TAP format output")
019b277b680f ("selftests: mm: skip whole test instead of failure")
46fd75d4a3c9 ("selftests: mm: add pagemap ioctl tests")
05f1edac8009 ("selftests/mm: run all tests from run_vmtests.sh")
000303329752 ("selftests/mm: make migration test robust to failure")
f6dd4e223d87 ("selftests/mm: skip soft-dirty tests on arm64")
ba91e7e5d15a ("selftests/mm: add tests for HWPOISON hugetlbfs read")
63773d2b593d ("Merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes.")
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c Mon Sep 17 00:00:00 2001
From: Dev Jain <dev.jain(a)arm.com>
Date: Tue, 21 May 2024 13:13:58 +0530
Subject: [PATCH] selftests/mm: compaction_test: fix bogus test success and
reduce probability of OOM-killer invocation
Reset nr_hugepages to zero before the start of the test.
If a non-zero number of hugepages is already set before the start of the
test, the following problems arise:
- The probability of the test getting OOM-killed increases. Proof:
The test wants to run on 80% of available memory to prevent OOM-killing
(see original code comments). Let the value of mem_free at the start
of the test, when nr_hugepages = 0, be x. In the other case, when
nr_hugepages > 0, let the memory consumed by hugepages be y. In the
former case, the test operates on 0.8 * x of memory. In the latter,
the test operates on 0.8 * (x - y) of memory, with y already filled,
hence, memory consumed is y + 0.8 * (x - y) = 0.8 * x + 0.2 * y > 0.8 *
x. Q.E.D
- The probability of a bogus test success increases. Proof: Let the
memory consumed by hugepages be greater than 25% of x, with x and y
defined as above. The definition of compaction_index is c_index = (x -
y)/z where z is the memory consumed by hugepages after trying to
increase them again. In check_compaction(), we set the number of
hugepages to zero, and then increase them back; the probability that
they will be set back to consume at least y amount of memory again is
very high (since there is not much delay between the two attempts of
changing nr_hugepages). Hence, z >= y > (x/4) (by the 25% assumption).
Therefore, c_index = (x - y)/z <= (x - y)/y = x/y - 1 < 4 - 1 = 3
hence, c_index can always be forced to be less than 3, thereby the test
succeeding always. Q.E.D
Link: https://lkml.kernel.org/r/20240521074358.675031-4-dev.jain@arm.com
Fixes: bd67d5c15cc1 ("Test compaction of mlocked memory")
Signed-off-by: Dev Jain <dev.jain(a)arm.com>
Cc: <stable(a)vger.kernel.org>
Cc: Anshuman Khandual <anshuman.khandual(a)arm.com>
Cc: Shuah Khan <shuah(a)kernel.org>
Cc: Sri Jayaramappa <sjayaram(a)akamai.com>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
diff --git a/tools/testing/selftests/mm/compaction_test.c b/tools/testing/selftests/mm/compaction_test.c
index 5e9bd1da9370..e140558e6f53 100644
--- a/tools/testing/selftests/mm/compaction_test.c
+++ b/tools/testing/selftests/mm/compaction_test.c
@@ -82,13 +82,16 @@ int prereq(void)
return -1;
}
-int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
+int check_compaction(unsigned long mem_free, unsigned long hugepage_size,
+ unsigned long initial_nr_hugepages)
{
unsigned long nr_hugepages_ul;
int fd, ret = -1;
int compaction_index = 0;
- char initial_nr_hugepages[20] = {0};
char nr_hugepages[20] = {0};
+ char init_nr_hugepages[20] = {0};
+
+ sprintf(init_nr_hugepages, "%lu", initial_nr_hugepages);
/* We want to test with 80% of available memory. Else, OOM killer comes
in to play */
@@ -102,23 +105,6 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
goto out;
}
- if (read(fd, initial_nr_hugepages, sizeof(initial_nr_hugepages)) <= 0) {
- ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
- /* Start with the initial condition of 0 huge pages*/
- if (write(fd, "0", sizeof(char)) != sizeof(char)) {
- ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
/* Request a large number of huge pages. The Kernel will allocate
as much as it can */
if (write(fd, "100000", (6*sizeof(char))) != (6*sizeof(char))) {
@@ -146,8 +132,8 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
lseek(fd, 0, SEEK_SET);
- if (write(fd, initial_nr_hugepages, strlen(initial_nr_hugepages))
- != strlen(initial_nr_hugepages)) {
+ if (write(fd, init_nr_hugepages, strlen(init_nr_hugepages))
+ != strlen(init_nr_hugepages)) {
ksft_print_msg("Failed to write value to /proc/sys/vm/nr_hugepages: %s\n",
strerror(errno));
goto close_fd;
@@ -171,6 +157,41 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
return ret;
}
+int set_zero_hugepages(unsigned long *initial_nr_hugepages)
+{
+ int fd, ret = -1;
+ char nr_hugepages[20] = {0};
+
+ fd = open("/proc/sys/vm/nr_hugepages", O_RDWR | O_NONBLOCK);
+ if (fd < 0) {
+ ksft_print_msg("Failed to open /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto out;
+ }
+ if (read(fd, nr_hugepages, sizeof(nr_hugepages)) <= 0) {
+ ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ lseek(fd, 0, SEEK_SET);
+
+ /* Start with the initial condition of 0 huge pages */
+ if (write(fd, "0", sizeof(char)) != sizeof(char)) {
+ ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ *initial_nr_hugepages = strtoul(nr_hugepages, NULL, 10);
+ ret = 0;
+
+ close_fd:
+ close(fd);
+
+ out:
+ return ret;
+}
int main(int argc, char **argv)
{
@@ -181,6 +202,7 @@ int main(int argc, char **argv)
unsigned long mem_free = 0;
unsigned long hugepage_size = 0;
long mem_fragmentable_MB = 0;
+ unsigned long initial_nr_hugepages;
ksft_print_header();
@@ -189,6 +211,10 @@ int main(int argc, char **argv)
ksft_set_plan(1);
+ /* Start the test without hugepages reducing mem_free */
+ if (set_zero_hugepages(&initial_nr_hugepages))
+ ksft_exit_fail();
+
lim.rlim_cur = RLIM_INFINITY;
lim.rlim_max = RLIM_INFINITY;
if (setrlimit(RLIMIT_MEMLOCK, &lim))
@@ -232,7 +258,8 @@ int main(int argc, char **argv)
entry = entry->next;
}
- if (check_compaction(mem_free, hugepage_size) == 0)
+ if (check_compaction(mem_free, hugepage_size,
+ initial_nr_hugepages) == 0)
ksft_exit_pass();
ksft_exit_fail();
The patch below does not apply to the 5.4-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-5.4.y
git checkout FETCH_HEAD
git cherry-pick -x fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2024061353-scanner-unusable-1d09@gregkh' --subject-prefix 'PATCH 5.4.y' HEAD^..
Possible dependencies:
fb9293b6b015 ("selftests/mm: compaction_test: fix bogus test success and reduce probability of OOM-killer invocation")
9ad665ef55ea ("selftests/mm: compaction_test: fix incorrect write of zero to nr_hugepages")
d4202e66a4b1 ("selftests/mm: compaction_test: fix bogus test success on Aarch64")
69e545edbe8b ("selftests/mm: ksft_exit functions do not return")
f3b7568c4942 ("selftests/mm: log a consistent test name for check_compaction")
9c1490d911f8 ("selftests/mm: log skipped compaction test as a skip")
8c9eea721a98 ("selftests/mm: skip test if application doesn't has root privileges")
9a21701edc41 ("selftests/mm: conform test to TAP format output")
cb6e7cae1886 ("selftests/mm: gup_test: conform test to TAP format output")
019b277b680f ("selftests: mm: skip whole test instead of failure")
46fd75d4a3c9 ("selftests: mm: add pagemap ioctl tests")
05f1edac8009 ("selftests/mm: run all tests from run_vmtests.sh")
000303329752 ("selftests/mm: make migration test robust to failure")
f6dd4e223d87 ("selftests/mm: skip soft-dirty tests on arm64")
ba91e7e5d15a ("selftests/mm: add tests for HWPOISON hugetlbfs read")
63773d2b593d ("Merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes.")
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c Mon Sep 17 00:00:00 2001
From: Dev Jain <dev.jain(a)arm.com>
Date: Tue, 21 May 2024 13:13:58 +0530
Subject: [PATCH] selftests/mm: compaction_test: fix bogus test success and
reduce probability of OOM-killer invocation
Reset nr_hugepages to zero before the start of the test.
If a non-zero number of hugepages is already set before the start of the
test, the following problems arise:
- The probability of the test getting OOM-killed increases. Proof:
The test wants to run on 80% of available memory to prevent OOM-killing
(see original code comments). Let the value of mem_free at the start
of the test, when nr_hugepages = 0, be x. In the other case, when
nr_hugepages > 0, let the memory consumed by hugepages be y. In the
former case, the test operates on 0.8 * x of memory. In the latter,
the test operates on 0.8 * (x - y) of memory, with y already filled,
hence, memory consumed is y + 0.8 * (x - y) = 0.8 * x + 0.2 * y > 0.8 *
x. Q.E.D
- The probability of a bogus test success increases. Proof: Let the
memory consumed by hugepages be greater than 25% of x, with x and y
defined as above. The definition of compaction_index is c_index = (x -
y)/z where z is the memory consumed by hugepages after trying to
increase them again. In check_compaction(), we set the number of
hugepages to zero, and then increase them back; the probability that
they will be set back to consume at least y amount of memory again is
very high (since there is not much delay between the two attempts of
changing nr_hugepages). Hence, z >= y > (x/4) (by the 25% assumption).
Therefore, c_index = (x - y)/z <= (x - y)/y = x/y - 1 < 4 - 1 = 3
hence, c_index can always be forced to be less than 3, thereby the test
succeeding always. Q.E.D
Link: https://lkml.kernel.org/r/20240521074358.675031-4-dev.jain@arm.com
Fixes: bd67d5c15cc1 ("Test compaction of mlocked memory")
Signed-off-by: Dev Jain <dev.jain(a)arm.com>
Cc: <stable(a)vger.kernel.org>
Cc: Anshuman Khandual <anshuman.khandual(a)arm.com>
Cc: Shuah Khan <shuah(a)kernel.org>
Cc: Sri Jayaramappa <sjayaram(a)akamai.com>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
diff --git a/tools/testing/selftests/mm/compaction_test.c b/tools/testing/selftests/mm/compaction_test.c
index 5e9bd1da9370..e140558e6f53 100644
--- a/tools/testing/selftests/mm/compaction_test.c
+++ b/tools/testing/selftests/mm/compaction_test.c
@@ -82,13 +82,16 @@ int prereq(void)
return -1;
}
-int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
+int check_compaction(unsigned long mem_free, unsigned long hugepage_size,
+ unsigned long initial_nr_hugepages)
{
unsigned long nr_hugepages_ul;
int fd, ret = -1;
int compaction_index = 0;
- char initial_nr_hugepages[20] = {0};
char nr_hugepages[20] = {0};
+ char init_nr_hugepages[20] = {0};
+
+ sprintf(init_nr_hugepages, "%lu", initial_nr_hugepages);
/* We want to test with 80% of available memory. Else, OOM killer comes
in to play */
@@ -102,23 +105,6 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
goto out;
}
- if (read(fd, initial_nr_hugepages, sizeof(initial_nr_hugepages)) <= 0) {
- ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
- /* Start with the initial condition of 0 huge pages*/
- if (write(fd, "0", sizeof(char)) != sizeof(char)) {
- ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
/* Request a large number of huge pages. The Kernel will allocate
as much as it can */
if (write(fd, "100000", (6*sizeof(char))) != (6*sizeof(char))) {
@@ -146,8 +132,8 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
lseek(fd, 0, SEEK_SET);
- if (write(fd, initial_nr_hugepages, strlen(initial_nr_hugepages))
- != strlen(initial_nr_hugepages)) {
+ if (write(fd, init_nr_hugepages, strlen(init_nr_hugepages))
+ != strlen(init_nr_hugepages)) {
ksft_print_msg("Failed to write value to /proc/sys/vm/nr_hugepages: %s\n",
strerror(errno));
goto close_fd;
@@ -171,6 +157,41 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
return ret;
}
+int set_zero_hugepages(unsigned long *initial_nr_hugepages)
+{
+ int fd, ret = -1;
+ char nr_hugepages[20] = {0};
+
+ fd = open("/proc/sys/vm/nr_hugepages", O_RDWR | O_NONBLOCK);
+ if (fd < 0) {
+ ksft_print_msg("Failed to open /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto out;
+ }
+ if (read(fd, nr_hugepages, sizeof(nr_hugepages)) <= 0) {
+ ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ lseek(fd, 0, SEEK_SET);
+
+ /* Start with the initial condition of 0 huge pages */
+ if (write(fd, "0", sizeof(char)) != sizeof(char)) {
+ ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ *initial_nr_hugepages = strtoul(nr_hugepages, NULL, 10);
+ ret = 0;
+
+ close_fd:
+ close(fd);
+
+ out:
+ return ret;
+}
int main(int argc, char **argv)
{
@@ -181,6 +202,7 @@ int main(int argc, char **argv)
unsigned long mem_free = 0;
unsigned long hugepage_size = 0;
long mem_fragmentable_MB = 0;
+ unsigned long initial_nr_hugepages;
ksft_print_header();
@@ -189,6 +211,10 @@ int main(int argc, char **argv)
ksft_set_plan(1);
+ /* Start the test without hugepages reducing mem_free */
+ if (set_zero_hugepages(&initial_nr_hugepages))
+ ksft_exit_fail();
+
lim.rlim_cur = RLIM_INFINITY;
lim.rlim_max = RLIM_INFINITY;
if (setrlimit(RLIMIT_MEMLOCK, &lim))
@@ -232,7 +258,8 @@ int main(int argc, char **argv)
entry = entry->next;
}
- if (check_compaction(mem_free, hugepage_size) == 0)
+ if (check_compaction(mem_free, hugepage_size,
+ initial_nr_hugepages) == 0)
ksft_exit_pass();
ksft_exit_fail();
The patch below does not apply to the 5.10-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-5.10.y
git checkout FETCH_HEAD
git cherry-pick -x fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2024061351-oxidize-alright-8eee@gregkh' --subject-prefix 'PATCH 5.10.y' HEAD^..
Possible dependencies:
fb9293b6b015 ("selftests/mm: compaction_test: fix bogus test success and reduce probability of OOM-killer invocation")
9ad665ef55ea ("selftests/mm: compaction_test: fix incorrect write of zero to nr_hugepages")
d4202e66a4b1 ("selftests/mm: compaction_test: fix bogus test success on Aarch64")
69e545edbe8b ("selftests/mm: ksft_exit functions do not return")
f3b7568c4942 ("selftests/mm: log a consistent test name for check_compaction")
9c1490d911f8 ("selftests/mm: log skipped compaction test as a skip")
8c9eea721a98 ("selftests/mm: skip test if application doesn't has root privileges")
9a21701edc41 ("selftests/mm: conform test to TAP format output")
cb6e7cae1886 ("selftests/mm: gup_test: conform test to TAP format output")
019b277b680f ("selftests: mm: skip whole test instead of failure")
46fd75d4a3c9 ("selftests: mm: add pagemap ioctl tests")
05f1edac8009 ("selftests/mm: run all tests from run_vmtests.sh")
000303329752 ("selftests/mm: make migration test robust to failure")
f6dd4e223d87 ("selftests/mm: skip soft-dirty tests on arm64")
ba91e7e5d15a ("selftests/mm: add tests for HWPOISON hugetlbfs read")
63773d2b593d ("Merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes.")
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c Mon Sep 17 00:00:00 2001
From: Dev Jain <dev.jain(a)arm.com>
Date: Tue, 21 May 2024 13:13:58 +0530
Subject: [PATCH] selftests/mm: compaction_test: fix bogus test success and
reduce probability of OOM-killer invocation
Reset nr_hugepages to zero before the start of the test.
If a non-zero number of hugepages is already set before the start of the
test, the following problems arise:
- The probability of the test getting OOM-killed increases. Proof:
The test wants to run on 80% of available memory to prevent OOM-killing
(see original code comments). Let the value of mem_free at the start
of the test, when nr_hugepages = 0, be x. In the other case, when
nr_hugepages > 0, let the memory consumed by hugepages be y. In the
former case, the test operates on 0.8 * x of memory. In the latter,
the test operates on 0.8 * (x - y) of memory, with y already filled,
hence, memory consumed is y + 0.8 * (x - y) = 0.8 * x + 0.2 * y > 0.8 *
x. Q.E.D
- The probability of a bogus test success increases. Proof: Let the
memory consumed by hugepages be greater than 25% of x, with x and y
defined as above. The definition of compaction_index is c_index = (x -
y)/z where z is the memory consumed by hugepages after trying to
increase them again. In check_compaction(), we set the number of
hugepages to zero, and then increase them back; the probability that
they will be set back to consume at least y amount of memory again is
very high (since there is not much delay between the two attempts of
changing nr_hugepages). Hence, z >= y > (x/4) (by the 25% assumption).
Therefore, c_index = (x - y)/z <= (x - y)/y = x/y - 1 < 4 - 1 = 3
hence, c_index can always be forced to be less than 3, thereby the test
succeeding always. Q.E.D
Link: https://lkml.kernel.org/r/20240521074358.675031-4-dev.jain@arm.com
Fixes: bd67d5c15cc1 ("Test compaction of mlocked memory")
Signed-off-by: Dev Jain <dev.jain(a)arm.com>
Cc: <stable(a)vger.kernel.org>
Cc: Anshuman Khandual <anshuman.khandual(a)arm.com>
Cc: Shuah Khan <shuah(a)kernel.org>
Cc: Sri Jayaramappa <sjayaram(a)akamai.com>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
diff --git a/tools/testing/selftests/mm/compaction_test.c b/tools/testing/selftests/mm/compaction_test.c
index 5e9bd1da9370..e140558e6f53 100644
--- a/tools/testing/selftests/mm/compaction_test.c
+++ b/tools/testing/selftests/mm/compaction_test.c
@@ -82,13 +82,16 @@ int prereq(void)
return -1;
}
-int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
+int check_compaction(unsigned long mem_free, unsigned long hugepage_size,
+ unsigned long initial_nr_hugepages)
{
unsigned long nr_hugepages_ul;
int fd, ret = -1;
int compaction_index = 0;
- char initial_nr_hugepages[20] = {0};
char nr_hugepages[20] = {0};
+ char init_nr_hugepages[20] = {0};
+
+ sprintf(init_nr_hugepages, "%lu", initial_nr_hugepages);
/* We want to test with 80% of available memory. Else, OOM killer comes
in to play */
@@ -102,23 +105,6 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
goto out;
}
- if (read(fd, initial_nr_hugepages, sizeof(initial_nr_hugepages)) <= 0) {
- ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
- /* Start with the initial condition of 0 huge pages*/
- if (write(fd, "0", sizeof(char)) != sizeof(char)) {
- ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
/* Request a large number of huge pages. The Kernel will allocate
as much as it can */
if (write(fd, "100000", (6*sizeof(char))) != (6*sizeof(char))) {
@@ -146,8 +132,8 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
lseek(fd, 0, SEEK_SET);
- if (write(fd, initial_nr_hugepages, strlen(initial_nr_hugepages))
- != strlen(initial_nr_hugepages)) {
+ if (write(fd, init_nr_hugepages, strlen(init_nr_hugepages))
+ != strlen(init_nr_hugepages)) {
ksft_print_msg("Failed to write value to /proc/sys/vm/nr_hugepages: %s\n",
strerror(errno));
goto close_fd;
@@ -171,6 +157,41 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
return ret;
}
+int set_zero_hugepages(unsigned long *initial_nr_hugepages)
+{
+ int fd, ret = -1;
+ char nr_hugepages[20] = {0};
+
+ fd = open("/proc/sys/vm/nr_hugepages", O_RDWR | O_NONBLOCK);
+ if (fd < 0) {
+ ksft_print_msg("Failed to open /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto out;
+ }
+ if (read(fd, nr_hugepages, sizeof(nr_hugepages)) <= 0) {
+ ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ lseek(fd, 0, SEEK_SET);
+
+ /* Start with the initial condition of 0 huge pages */
+ if (write(fd, "0", sizeof(char)) != sizeof(char)) {
+ ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ *initial_nr_hugepages = strtoul(nr_hugepages, NULL, 10);
+ ret = 0;
+
+ close_fd:
+ close(fd);
+
+ out:
+ return ret;
+}
int main(int argc, char **argv)
{
@@ -181,6 +202,7 @@ int main(int argc, char **argv)
unsigned long mem_free = 0;
unsigned long hugepage_size = 0;
long mem_fragmentable_MB = 0;
+ unsigned long initial_nr_hugepages;
ksft_print_header();
@@ -189,6 +211,10 @@ int main(int argc, char **argv)
ksft_set_plan(1);
+ /* Start the test without hugepages reducing mem_free */
+ if (set_zero_hugepages(&initial_nr_hugepages))
+ ksft_exit_fail();
+
lim.rlim_cur = RLIM_INFINITY;
lim.rlim_max = RLIM_INFINITY;
if (setrlimit(RLIMIT_MEMLOCK, &lim))
@@ -232,7 +258,8 @@ int main(int argc, char **argv)
entry = entry->next;
}
- if (check_compaction(mem_free, hugepage_size) == 0)
+ if (check_compaction(mem_free, hugepage_size,
+ initial_nr_hugepages) == 0)
ksft_exit_pass();
ksft_exit_fail();
The patch below does not apply to the 5.15-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-5.15.y
git checkout FETCH_HEAD
git cherry-pick -x fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2024061349-imply-endnote-102d@gregkh' --subject-prefix 'PATCH 5.15.y' HEAD^..
Possible dependencies:
fb9293b6b015 ("selftests/mm: compaction_test: fix bogus test success and reduce probability of OOM-killer invocation")
9ad665ef55ea ("selftests/mm: compaction_test: fix incorrect write of zero to nr_hugepages")
d4202e66a4b1 ("selftests/mm: compaction_test: fix bogus test success on Aarch64")
69e545edbe8b ("selftests/mm: ksft_exit functions do not return")
f3b7568c4942 ("selftests/mm: log a consistent test name for check_compaction")
9c1490d911f8 ("selftests/mm: log skipped compaction test as a skip")
8c9eea721a98 ("selftests/mm: skip test if application doesn't has root privileges")
9a21701edc41 ("selftests/mm: conform test to TAP format output")
cb6e7cae1886 ("selftests/mm: gup_test: conform test to TAP format output")
019b277b680f ("selftests: mm: skip whole test instead of failure")
46fd75d4a3c9 ("selftests: mm: add pagemap ioctl tests")
05f1edac8009 ("selftests/mm: run all tests from run_vmtests.sh")
000303329752 ("selftests/mm: make migration test robust to failure")
f6dd4e223d87 ("selftests/mm: skip soft-dirty tests on arm64")
ba91e7e5d15a ("selftests/mm: add tests for HWPOISON hugetlbfs read")
63773d2b593d ("Merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes.")
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c Mon Sep 17 00:00:00 2001
From: Dev Jain <dev.jain(a)arm.com>
Date: Tue, 21 May 2024 13:13:58 +0530
Subject: [PATCH] selftests/mm: compaction_test: fix bogus test success and
reduce probability of OOM-killer invocation
Reset nr_hugepages to zero before the start of the test.
If a non-zero number of hugepages is already set before the start of the
test, the following problems arise:
- The probability of the test getting OOM-killed increases. Proof:
The test wants to run on 80% of available memory to prevent OOM-killing
(see original code comments). Let the value of mem_free at the start
of the test, when nr_hugepages = 0, be x. In the other case, when
nr_hugepages > 0, let the memory consumed by hugepages be y. In the
former case, the test operates on 0.8 * x of memory. In the latter,
the test operates on 0.8 * (x - y) of memory, with y already filled,
hence, memory consumed is y + 0.8 * (x - y) = 0.8 * x + 0.2 * y > 0.8 *
x. Q.E.D
- The probability of a bogus test success increases. Proof: Let the
memory consumed by hugepages be greater than 25% of x, with x and y
defined as above. The definition of compaction_index is c_index = (x -
y)/z where z is the memory consumed by hugepages after trying to
increase them again. In check_compaction(), we set the number of
hugepages to zero, and then increase them back; the probability that
they will be set back to consume at least y amount of memory again is
very high (since there is not much delay between the two attempts of
changing nr_hugepages). Hence, z >= y > (x/4) (by the 25% assumption).
Therefore, c_index = (x - y)/z <= (x - y)/y = x/y - 1 < 4 - 1 = 3
hence, c_index can always be forced to be less than 3, thereby the test
succeeding always. Q.E.D
Link: https://lkml.kernel.org/r/20240521074358.675031-4-dev.jain@arm.com
Fixes: bd67d5c15cc1 ("Test compaction of mlocked memory")
Signed-off-by: Dev Jain <dev.jain(a)arm.com>
Cc: <stable(a)vger.kernel.org>
Cc: Anshuman Khandual <anshuman.khandual(a)arm.com>
Cc: Shuah Khan <shuah(a)kernel.org>
Cc: Sri Jayaramappa <sjayaram(a)akamai.com>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
diff --git a/tools/testing/selftests/mm/compaction_test.c b/tools/testing/selftests/mm/compaction_test.c
index 5e9bd1da9370..e140558e6f53 100644
--- a/tools/testing/selftests/mm/compaction_test.c
+++ b/tools/testing/selftests/mm/compaction_test.c
@@ -82,13 +82,16 @@ int prereq(void)
return -1;
}
-int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
+int check_compaction(unsigned long mem_free, unsigned long hugepage_size,
+ unsigned long initial_nr_hugepages)
{
unsigned long nr_hugepages_ul;
int fd, ret = -1;
int compaction_index = 0;
- char initial_nr_hugepages[20] = {0};
char nr_hugepages[20] = {0};
+ char init_nr_hugepages[20] = {0};
+
+ sprintf(init_nr_hugepages, "%lu", initial_nr_hugepages);
/* We want to test with 80% of available memory. Else, OOM killer comes
in to play */
@@ -102,23 +105,6 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
goto out;
}
- if (read(fd, initial_nr_hugepages, sizeof(initial_nr_hugepages)) <= 0) {
- ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
- /* Start with the initial condition of 0 huge pages*/
- if (write(fd, "0", sizeof(char)) != sizeof(char)) {
- ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
/* Request a large number of huge pages. The Kernel will allocate
as much as it can */
if (write(fd, "100000", (6*sizeof(char))) != (6*sizeof(char))) {
@@ -146,8 +132,8 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
lseek(fd, 0, SEEK_SET);
- if (write(fd, initial_nr_hugepages, strlen(initial_nr_hugepages))
- != strlen(initial_nr_hugepages)) {
+ if (write(fd, init_nr_hugepages, strlen(init_nr_hugepages))
+ != strlen(init_nr_hugepages)) {
ksft_print_msg("Failed to write value to /proc/sys/vm/nr_hugepages: %s\n",
strerror(errno));
goto close_fd;
@@ -171,6 +157,41 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
return ret;
}
+int set_zero_hugepages(unsigned long *initial_nr_hugepages)
+{
+ int fd, ret = -1;
+ char nr_hugepages[20] = {0};
+
+ fd = open("/proc/sys/vm/nr_hugepages", O_RDWR | O_NONBLOCK);
+ if (fd < 0) {
+ ksft_print_msg("Failed to open /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto out;
+ }
+ if (read(fd, nr_hugepages, sizeof(nr_hugepages)) <= 0) {
+ ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ lseek(fd, 0, SEEK_SET);
+
+ /* Start with the initial condition of 0 huge pages */
+ if (write(fd, "0", sizeof(char)) != sizeof(char)) {
+ ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ *initial_nr_hugepages = strtoul(nr_hugepages, NULL, 10);
+ ret = 0;
+
+ close_fd:
+ close(fd);
+
+ out:
+ return ret;
+}
int main(int argc, char **argv)
{
@@ -181,6 +202,7 @@ int main(int argc, char **argv)
unsigned long mem_free = 0;
unsigned long hugepage_size = 0;
long mem_fragmentable_MB = 0;
+ unsigned long initial_nr_hugepages;
ksft_print_header();
@@ -189,6 +211,10 @@ int main(int argc, char **argv)
ksft_set_plan(1);
+ /* Start the test without hugepages reducing mem_free */
+ if (set_zero_hugepages(&initial_nr_hugepages))
+ ksft_exit_fail();
+
lim.rlim_cur = RLIM_INFINITY;
lim.rlim_max = RLIM_INFINITY;
if (setrlimit(RLIMIT_MEMLOCK, &lim))
@@ -232,7 +258,8 @@ int main(int argc, char **argv)
entry = entry->next;
}
- if (check_compaction(mem_free, hugepage_size) == 0)
+ if (check_compaction(mem_free, hugepage_size,
+ initial_nr_hugepages) == 0)
ksft_exit_pass();
ksft_exit_fail();
The patch below does not apply to the 6.1-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-6.1.y
git checkout FETCH_HEAD
git cherry-pick -x fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2024061347-carat-unguided-96cc@gregkh' --subject-prefix 'PATCH 6.1.y' HEAD^..
Possible dependencies:
fb9293b6b015 ("selftests/mm: compaction_test: fix bogus test success and reduce probability of OOM-killer invocation")
9ad665ef55ea ("selftests/mm: compaction_test: fix incorrect write of zero to nr_hugepages")
d4202e66a4b1 ("selftests/mm: compaction_test: fix bogus test success on Aarch64")
69e545edbe8b ("selftests/mm: ksft_exit functions do not return")
f3b7568c4942 ("selftests/mm: log a consistent test name for check_compaction")
9c1490d911f8 ("selftests/mm: log skipped compaction test as a skip")
8c9eea721a98 ("selftests/mm: skip test if application doesn't has root privileges")
9a21701edc41 ("selftests/mm: conform test to TAP format output")
cb6e7cae1886 ("selftests/mm: gup_test: conform test to TAP format output")
019b277b680f ("selftests: mm: skip whole test instead of failure")
46fd75d4a3c9 ("selftests: mm: add pagemap ioctl tests")
05f1edac8009 ("selftests/mm: run all tests from run_vmtests.sh")
000303329752 ("selftests/mm: make migration test robust to failure")
f6dd4e223d87 ("selftests/mm: skip soft-dirty tests on arm64")
ba91e7e5d15a ("selftests/mm: add tests for HWPOISON hugetlbfs read")
63773d2b593d ("Merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes.")
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c Mon Sep 17 00:00:00 2001
From: Dev Jain <dev.jain(a)arm.com>
Date: Tue, 21 May 2024 13:13:58 +0530
Subject: [PATCH] selftests/mm: compaction_test: fix bogus test success and
reduce probability of OOM-killer invocation
Reset nr_hugepages to zero before the start of the test.
If a non-zero number of hugepages is already set before the start of the
test, the following problems arise:
- The probability of the test getting OOM-killed increases. Proof:
The test wants to run on 80% of available memory to prevent OOM-killing
(see original code comments). Let the value of mem_free at the start
of the test, when nr_hugepages = 0, be x. In the other case, when
nr_hugepages > 0, let the memory consumed by hugepages be y. In the
former case, the test operates on 0.8 * x of memory. In the latter,
the test operates on 0.8 * (x - y) of memory, with y already filled,
hence, memory consumed is y + 0.8 * (x - y) = 0.8 * x + 0.2 * y > 0.8 *
x. Q.E.D
- The probability of a bogus test success increases. Proof: Let the
memory consumed by hugepages be greater than 25% of x, with x and y
defined as above. The definition of compaction_index is c_index = (x -
y)/z where z is the memory consumed by hugepages after trying to
increase them again. In check_compaction(), we set the number of
hugepages to zero, and then increase them back; the probability that
they will be set back to consume at least y amount of memory again is
very high (since there is not much delay between the two attempts of
changing nr_hugepages). Hence, z >= y > (x/4) (by the 25% assumption).
Therefore, c_index = (x - y)/z <= (x - y)/y = x/y - 1 < 4 - 1 = 3
hence, c_index can always be forced to be less than 3, thereby the test
succeeding always. Q.E.D
Link: https://lkml.kernel.org/r/20240521074358.675031-4-dev.jain@arm.com
Fixes: bd67d5c15cc1 ("Test compaction of mlocked memory")
Signed-off-by: Dev Jain <dev.jain(a)arm.com>
Cc: <stable(a)vger.kernel.org>
Cc: Anshuman Khandual <anshuman.khandual(a)arm.com>
Cc: Shuah Khan <shuah(a)kernel.org>
Cc: Sri Jayaramappa <sjayaram(a)akamai.com>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
diff --git a/tools/testing/selftests/mm/compaction_test.c b/tools/testing/selftests/mm/compaction_test.c
index 5e9bd1da9370..e140558e6f53 100644
--- a/tools/testing/selftests/mm/compaction_test.c
+++ b/tools/testing/selftests/mm/compaction_test.c
@@ -82,13 +82,16 @@ int prereq(void)
return -1;
}
-int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
+int check_compaction(unsigned long mem_free, unsigned long hugepage_size,
+ unsigned long initial_nr_hugepages)
{
unsigned long nr_hugepages_ul;
int fd, ret = -1;
int compaction_index = 0;
- char initial_nr_hugepages[20] = {0};
char nr_hugepages[20] = {0};
+ char init_nr_hugepages[20] = {0};
+
+ sprintf(init_nr_hugepages, "%lu", initial_nr_hugepages);
/* We want to test with 80% of available memory. Else, OOM killer comes
in to play */
@@ -102,23 +105,6 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
goto out;
}
- if (read(fd, initial_nr_hugepages, sizeof(initial_nr_hugepages)) <= 0) {
- ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
- /* Start with the initial condition of 0 huge pages*/
- if (write(fd, "0", sizeof(char)) != sizeof(char)) {
- ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
/* Request a large number of huge pages. The Kernel will allocate
as much as it can */
if (write(fd, "100000", (6*sizeof(char))) != (6*sizeof(char))) {
@@ -146,8 +132,8 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
lseek(fd, 0, SEEK_SET);
- if (write(fd, initial_nr_hugepages, strlen(initial_nr_hugepages))
- != strlen(initial_nr_hugepages)) {
+ if (write(fd, init_nr_hugepages, strlen(init_nr_hugepages))
+ != strlen(init_nr_hugepages)) {
ksft_print_msg("Failed to write value to /proc/sys/vm/nr_hugepages: %s\n",
strerror(errno));
goto close_fd;
@@ -171,6 +157,41 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
return ret;
}
+int set_zero_hugepages(unsigned long *initial_nr_hugepages)
+{
+ int fd, ret = -1;
+ char nr_hugepages[20] = {0};
+
+ fd = open("/proc/sys/vm/nr_hugepages", O_RDWR | O_NONBLOCK);
+ if (fd < 0) {
+ ksft_print_msg("Failed to open /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto out;
+ }
+ if (read(fd, nr_hugepages, sizeof(nr_hugepages)) <= 0) {
+ ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ lseek(fd, 0, SEEK_SET);
+
+ /* Start with the initial condition of 0 huge pages */
+ if (write(fd, "0", sizeof(char)) != sizeof(char)) {
+ ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ *initial_nr_hugepages = strtoul(nr_hugepages, NULL, 10);
+ ret = 0;
+
+ close_fd:
+ close(fd);
+
+ out:
+ return ret;
+}
int main(int argc, char **argv)
{
@@ -181,6 +202,7 @@ int main(int argc, char **argv)
unsigned long mem_free = 0;
unsigned long hugepage_size = 0;
long mem_fragmentable_MB = 0;
+ unsigned long initial_nr_hugepages;
ksft_print_header();
@@ -189,6 +211,10 @@ int main(int argc, char **argv)
ksft_set_plan(1);
+ /* Start the test without hugepages reducing mem_free */
+ if (set_zero_hugepages(&initial_nr_hugepages))
+ ksft_exit_fail();
+
lim.rlim_cur = RLIM_INFINITY;
lim.rlim_max = RLIM_INFINITY;
if (setrlimit(RLIMIT_MEMLOCK, &lim))
@@ -232,7 +258,8 @@ int main(int argc, char **argv)
entry = entry->next;
}
- if (check_compaction(mem_free, hugepage_size) == 0)
+ if (check_compaction(mem_free, hugepage_size,
+ initial_nr_hugepages) == 0)
ksft_exit_pass();
ksft_exit_fail();
The patch below does not apply to the 6.6-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-6.6.y
git checkout FETCH_HEAD
git cherry-pick -x fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2024061345-fanciness-reheat-95c1@gregkh' --subject-prefix 'PATCH 6.6.y' HEAD^..
Possible dependencies:
fb9293b6b015 ("selftests/mm: compaction_test: fix bogus test success and reduce probability of OOM-killer invocation")
9ad665ef55ea ("selftests/mm: compaction_test: fix incorrect write of zero to nr_hugepages")
d4202e66a4b1 ("selftests/mm: compaction_test: fix bogus test success on Aarch64")
69e545edbe8b ("selftests/mm: ksft_exit functions do not return")
f3b7568c4942 ("selftests/mm: log a consistent test name for check_compaction")
9c1490d911f8 ("selftests/mm: log skipped compaction test as a skip")
8c9eea721a98 ("selftests/mm: skip test if application doesn't has root privileges")
9a21701edc41 ("selftests/mm: conform test to TAP format output")
cb6e7cae1886 ("selftests/mm: gup_test: conform test to TAP format output")
019b277b680f ("selftests: mm: skip whole test instead of failure")
46fd75d4a3c9 ("selftests: mm: add pagemap ioctl tests")
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c Mon Sep 17 00:00:00 2001
From: Dev Jain <dev.jain(a)arm.com>
Date: Tue, 21 May 2024 13:13:58 +0530
Subject: [PATCH] selftests/mm: compaction_test: fix bogus test success and
reduce probability of OOM-killer invocation
Reset nr_hugepages to zero before the start of the test.
If a non-zero number of hugepages is already set before the start of the
test, the following problems arise:
- The probability of the test getting OOM-killed increases. Proof:
The test wants to run on 80% of available memory to prevent OOM-killing
(see original code comments). Let the value of mem_free at the start
of the test, when nr_hugepages = 0, be x. In the other case, when
nr_hugepages > 0, let the memory consumed by hugepages be y. In the
former case, the test operates on 0.8 * x of memory. In the latter,
the test operates on 0.8 * (x - y) of memory, with y already filled,
hence, memory consumed is y + 0.8 * (x - y) = 0.8 * x + 0.2 * y > 0.8 *
x. Q.E.D
- The probability of a bogus test success increases. Proof: Let the
memory consumed by hugepages be greater than 25% of x, with x and y
defined as above. The definition of compaction_index is c_index = (x -
y)/z where z is the memory consumed by hugepages after trying to
increase them again. In check_compaction(), we set the number of
hugepages to zero, and then increase them back; the probability that
they will be set back to consume at least y amount of memory again is
very high (since there is not much delay between the two attempts of
changing nr_hugepages). Hence, z >= y > (x/4) (by the 25% assumption).
Therefore, c_index = (x - y)/z <= (x - y)/y = x/y - 1 < 4 - 1 = 3
hence, c_index can always be forced to be less than 3, thereby the test
succeeding always. Q.E.D
Link: https://lkml.kernel.org/r/20240521074358.675031-4-dev.jain@arm.com
Fixes: bd67d5c15cc1 ("Test compaction of mlocked memory")
Signed-off-by: Dev Jain <dev.jain(a)arm.com>
Cc: <stable(a)vger.kernel.org>
Cc: Anshuman Khandual <anshuman.khandual(a)arm.com>
Cc: Shuah Khan <shuah(a)kernel.org>
Cc: Sri Jayaramappa <sjayaram(a)akamai.com>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
diff --git a/tools/testing/selftests/mm/compaction_test.c b/tools/testing/selftests/mm/compaction_test.c
index 5e9bd1da9370..e140558e6f53 100644
--- a/tools/testing/selftests/mm/compaction_test.c
+++ b/tools/testing/selftests/mm/compaction_test.c
@@ -82,13 +82,16 @@ int prereq(void)
return -1;
}
-int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
+int check_compaction(unsigned long mem_free, unsigned long hugepage_size,
+ unsigned long initial_nr_hugepages)
{
unsigned long nr_hugepages_ul;
int fd, ret = -1;
int compaction_index = 0;
- char initial_nr_hugepages[20] = {0};
char nr_hugepages[20] = {0};
+ char init_nr_hugepages[20] = {0};
+
+ sprintf(init_nr_hugepages, "%lu", initial_nr_hugepages);
/* We want to test with 80% of available memory. Else, OOM killer comes
in to play */
@@ -102,23 +105,6 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
goto out;
}
- if (read(fd, initial_nr_hugepages, sizeof(initial_nr_hugepages)) <= 0) {
- ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
- /* Start with the initial condition of 0 huge pages*/
- if (write(fd, "0", sizeof(char)) != sizeof(char)) {
- ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
/* Request a large number of huge pages. The Kernel will allocate
as much as it can */
if (write(fd, "100000", (6*sizeof(char))) != (6*sizeof(char))) {
@@ -146,8 +132,8 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
lseek(fd, 0, SEEK_SET);
- if (write(fd, initial_nr_hugepages, strlen(initial_nr_hugepages))
- != strlen(initial_nr_hugepages)) {
+ if (write(fd, init_nr_hugepages, strlen(init_nr_hugepages))
+ != strlen(init_nr_hugepages)) {
ksft_print_msg("Failed to write value to /proc/sys/vm/nr_hugepages: %s\n",
strerror(errno));
goto close_fd;
@@ -171,6 +157,41 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
return ret;
}
+int set_zero_hugepages(unsigned long *initial_nr_hugepages)
+{
+ int fd, ret = -1;
+ char nr_hugepages[20] = {0};
+
+ fd = open("/proc/sys/vm/nr_hugepages", O_RDWR | O_NONBLOCK);
+ if (fd < 0) {
+ ksft_print_msg("Failed to open /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto out;
+ }
+ if (read(fd, nr_hugepages, sizeof(nr_hugepages)) <= 0) {
+ ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ lseek(fd, 0, SEEK_SET);
+
+ /* Start with the initial condition of 0 huge pages */
+ if (write(fd, "0", sizeof(char)) != sizeof(char)) {
+ ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ *initial_nr_hugepages = strtoul(nr_hugepages, NULL, 10);
+ ret = 0;
+
+ close_fd:
+ close(fd);
+
+ out:
+ return ret;
+}
int main(int argc, char **argv)
{
@@ -181,6 +202,7 @@ int main(int argc, char **argv)
unsigned long mem_free = 0;
unsigned long hugepage_size = 0;
long mem_fragmentable_MB = 0;
+ unsigned long initial_nr_hugepages;
ksft_print_header();
@@ -189,6 +211,10 @@ int main(int argc, char **argv)
ksft_set_plan(1);
+ /* Start the test without hugepages reducing mem_free */
+ if (set_zero_hugepages(&initial_nr_hugepages))
+ ksft_exit_fail();
+
lim.rlim_cur = RLIM_INFINITY;
lim.rlim_max = RLIM_INFINITY;
if (setrlimit(RLIMIT_MEMLOCK, &lim))
@@ -232,7 +258,8 @@ int main(int argc, char **argv)
entry = entry->next;
}
- if (check_compaction(mem_free, hugepage_size) == 0)
+ if (check_compaction(mem_free, hugepage_size,
+ initial_nr_hugepages) == 0)
ksft_exit_pass();
ksft_exit_fail();
The patch below does not apply to the 6.9-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-6.9.y
git checkout FETCH_HEAD
git cherry-pick -x fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2024061344-citric-service-140d@gregkh' --subject-prefix 'PATCH 6.9.y' HEAD^..
Possible dependencies:
fb9293b6b015 ("selftests/mm: compaction_test: fix bogus test success and reduce probability of OOM-killer invocation")
9ad665ef55ea ("selftests/mm: compaction_test: fix incorrect write of zero to nr_hugepages")
d4202e66a4b1 ("selftests/mm: compaction_test: fix bogus test success on Aarch64")
69e545edbe8b ("selftests/mm: ksft_exit functions do not return")
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From fb9293b6b0156fbf6ab97a1625d99a29c36d9f0c Mon Sep 17 00:00:00 2001
From: Dev Jain <dev.jain(a)arm.com>
Date: Tue, 21 May 2024 13:13:58 +0530
Subject: [PATCH] selftests/mm: compaction_test: fix bogus test success and
reduce probability of OOM-killer invocation
Reset nr_hugepages to zero before the start of the test.
If a non-zero number of hugepages is already set before the start of the
test, the following problems arise:
- The probability of the test getting OOM-killed increases. Proof:
The test wants to run on 80% of available memory to prevent OOM-killing
(see original code comments). Let the value of mem_free at the start
of the test, when nr_hugepages = 0, be x. In the other case, when
nr_hugepages > 0, let the memory consumed by hugepages be y. In the
former case, the test operates on 0.8 * x of memory. In the latter,
the test operates on 0.8 * (x - y) of memory, with y already filled,
hence, memory consumed is y + 0.8 * (x - y) = 0.8 * x + 0.2 * y > 0.8 *
x. Q.E.D
- The probability of a bogus test success increases. Proof: Let the
memory consumed by hugepages be greater than 25% of x, with x and y
defined as above. The definition of compaction_index is c_index = (x -
y)/z where z is the memory consumed by hugepages after trying to
increase them again. In check_compaction(), we set the number of
hugepages to zero, and then increase them back; the probability that
they will be set back to consume at least y amount of memory again is
very high (since there is not much delay between the two attempts of
changing nr_hugepages). Hence, z >= y > (x/4) (by the 25% assumption).
Therefore, c_index = (x - y)/z <= (x - y)/y = x/y - 1 < 4 - 1 = 3
hence, c_index can always be forced to be less than 3, thereby the test
succeeding always. Q.E.D
Link: https://lkml.kernel.org/r/20240521074358.675031-4-dev.jain@arm.com
Fixes: bd67d5c15cc1 ("Test compaction of mlocked memory")
Signed-off-by: Dev Jain <dev.jain(a)arm.com>
Cc: <stable(a)vger.kernel.org>
Cc: Anshuman Khandual <anshuman.khandual(a)arm.com>
Cc: Shuah Khan <shuah(a)kernel.org>
Cc: Sri Jayaramappa <sjayaram(a)akamai.com>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
diff --git a/tools/testing/selftests/mm/compaction_test.c b/tools/testing/selftests/mm/compaction_test.c
index 5e9bd1da9370..e140558e6f53 100644
--- a/tools/testing/selftests/mm/compaction_test.c
+++ b/tools/testing/selftests/mm/compaction_test.c
@@ -82,13 +82,16 @@ int prereq(void)
return -1;
}
-int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
+int check_compaction(unsigned long mem_free, unsigned long hugepage_size,
+ unsigned long initial_nr_hugepages)
{
unsigned long nr_hugepages_ul;
int fd, ret = -1;
int compaction_index = 0;
- char initial_nr_hugepages[20] = {0};
char nr_hugepages[20] = {0};
+ char init_nr_hugepages[20] = {0};
+
+ sprintf(init_nr_hugepages, "%lu", initial_nr_hugepages);
/* We want to test with 80% of available memory. Else, OOM killer comes
in to play */
@@ -102,23 +105,6 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
goto out;
}
- if (read(fd, initial_nr_hugepages, sizeof(initial_nr_hugepages)) <= 0) {
- ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
- /* Start with the initial condition of 0 huge pages*/
- if (write(fd, "0", sizeof(char)) != sizeof(char)) {
- ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
- strerror(errno));
- goto close_fd;
- }
-
- lseek(fd, 0, SEEK_SET);
-
/* Request a large number of huge pages. The Kernel will allocate
as much as it can */
if (write(fd, "100000", (6*sizeof(char))) != (6*sizeof(char))) {
@@ -146,8 +132,8 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
lseek(fd, 0, SEEK_SET);
- if (write(fd, initial_nr_hugepages, strlen(initial_nr_hugepages))
- != strlen(initial_nr_hugepages)) {
+ if (write(fd, init_nr_hugepages, strlen(init_nr_hugepages))
+ != strlen(init_nr_hugepages)) {
ksft_print_msg("Failed to write value to /proc/sys/vm/nr_hugepages: %s\n",
strerror(errno));
goto close_fd;
@@ -171,6 +157,41 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
return ret;
}
+int set_zero_hugepages(unsigned long *initial_nr_hugepages)
+{
+ int fd, ret = -1;
+ char nr_hugepages[20] = {0};
+
+ fd = open("/proc/sys/vm/nr_hugepages", O_RDWR | O_NONBLOCK);
+ if (fd < 0) {
+ ksft_print_msg("Failed to open /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto out;
+ }
+ if (read(fd, nr_hugepages, sizeof(nr_hugepages)) <= 0) {
+ ksft_print_msg("Failed to read from /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ lseek(fd, 0, SEEK_SET);
+
+ /* Start with the initial condition of 0 huge pages */
+ if (write(fd, "0", sizeof(char)) != sizeof(char)) {
+ ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",
+ strerror(errno));
+ goto close_fd;
+ }
+
+ *initial_nr_hugepages = strtoul(nr_hugepages, NULL, 10);
+ ret = 0;
+
+ close_fd:
+ close(fd);
+
+ out:
+ return ret;
+}
int main(int argc, char **argv)
{
@@ -181,6 +202,7 @@ int main(int argc, char **argv)
unsigned long mem_free = 0;
unsigned long hugepage_size = 0;
long mem_fragmentable_MB = 0;
+ unsigned long initial_nr_hugepages;
ksft_print_header();
@@ -189,6 +211,10 @@ int main(int argc, char **argv)
ksft_set_plan(1);
+ /* Start the test without hugepages reducing mem_free */
+ if (set_zero_hugepages(&initial_nr_hugepages))
+ ksft_exit_fail();
+
lim.rlim_cur = RLIM_INFINITY;
lim.rlim_max = RLIM_INFINITY;
if (setrlimit(RLIMIT_MEMLOCK, &lim))
@@ -232,7 +258,8 @@ int main(int argc, char **argv)
entry = entry->next;
}
- if (check_compaction(mem_free, hugepage_size) == 0)
+ if (check_compaction(mem_free, hugepage_size,
+ initial_nr_hugepages) == 0)
ksft_exit_pass();
ksft_exit_fail();
The patch below does not apply to the 4.19-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable(a)vger.kernel.org>.
To reproduce the conflict and resubmit, you may use the following commands:
git fetch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-4.19.y
git checkout FETCH_HEAD
git cherry-pick -x 9ad665ef55eaad1ead1406a58a34f615a7c18b5e
# <resolve conflicts, build, test, etc.>
git commit -s
git send-email --to '<stable(a)vger.kernel.org>' --in-reply-to '2024061334-splinter-unshipped-1c3e@gregkh' --subject-prefix 'PATCH 4.19.y' HEAD^..
Possible dependencies:
9ad665ef55ea ("selftests/mm: compaction_test: fix incorrect write of zero to nr_hugepages")
thanks,
greg k-h
------------------ original commit in Linus's tree ------------------
From 9ad665ef55eaad1ead1406a58a34f615a7c18b5e Mon Sep 17 00:00:00 2001
From: Dev Jain <dev.jain(a)arm.com>
Date: Tue, 21 May 2024 13:13:57 +0530
Subject: [PATCH] selftests/mm: compaction_test: fix incorrect write of zero to
nr_hugepages
Currently, the test tries to set nr_hugepages to zero, but that is not
actually done because the file offset is not reset after read(). Fix that
using lseek().
Link: https://lkml.kernel.org/r/20240521074358.675031-3-dev.jain@arm.com
Fixes: bd67d5c15cc1 ("Test compaction of mlocked memory")
Signed-off-by: Dev Jain <dev.jain(a)arm.com>
Cc: <stable(a)vger.kernel.org>
Cc: Anshuman Khandual <anshuman.khandual(a)arm.com>
Cc: Shuah Khan <shuah(a)kernel.org>
Cc: Sri Jayaramappa <sjayaram(a)akamai.com>
Signed-off-by: Andrew Morton <akpm(a)linux-foundation.org>
diff --git a/tools/testing/selftests/mm/compaction_test.c b/tools/testing/selftests/mm/compaction_test.c
index 0b249a06a60b..5e9bd1da9370 100644
--- a/tools/testing/selftests/mm/compaction_test.c
+++ b/tools/testing/selftests/mm/compaction_test.c
@@ -108,6 +108,8 @@ int check_compaction(unsigned long mem_free, unsigned long hugepage_size)
goto close_fd;
}
+ lseek(fd, 0, SEEK_SET);
+
/* Start with the initial condition of 0 huge pages*/
if (write(fd, "0", sizeof(char)) != sizeof(char)) {
ksft_print_msg("Failed to write 0 to /proc/sys/vm/nr_hugepages: %s\n",