Real-time setups try hard to ensure proper isolation between time
critical applications and e.g. network processing performed by the
network stack in softirq and RPS is used to move the softirq
activity away from the isolated core.
If the network configuration is dynamic, with netns and devices
routinely created at run-time, enforcing the correct RPS setting
on each newly created device allowing to transient bad configuration
became complex.
These series try to address the above, introducing a new
sysctl knob: rps_default_mask. The new sysctl entry allows
configuring a systemwide RPS mask, to be enforced since receive
queue creation time without any fourther per device configuration
required.
Additionally, a simple self-test is introduced to check the
rps_default_mask behavior.
v1 -> v2:
- fix sparse warning in patch 2/3
Paolo Abeni (3):
net/sysctl: factor-out netdev_rx_queue_set_rps_mask() helper
net/core: introduce default_rps_mask netns attribute
self-tests: introduce self-tests for RPS default mask
Documentation/admin-guide/sysctl/net.rst | 6 ++
include/linux/netdevice.h | 1 +
net/core/net-sysfs.c | 73 +++++++++++--------
net/core/sysctl_net_core.c | 58 +++++++++++++++
tools/testing/selftests/net/Makefile | 1 +
tools/testing/selftests/net/config | 3 +
.../testing/selftests/net/rps_default_mask.sh | 57 +++++++++++++++
7 files changed, 169 insertions(+), 30 deletions(-)
create mode 100755 tools/testing/selftests/net/rps_default_mask.sh
--
2.26.2
From: Vincent Cheng <vincent.cheng.xh(a)renesas.com>
This series adds adjust phase to the PTP Hardware Clock device interface.
Some PTP hardware clocks have a write phase mode that has
a built-in hardware filtering capability. The write phase mode
utilizes a phase offset control word instead of a frequency offset
control word. Add adjust phase function to take advantage of this
capability.
Changes since v1:
- As suggested by Richard Cochran:
1. ops->adjphase is new so need to check for non-null function pointer.
2. Kernel coding style uses lower_case_underscores.
3. Use existing PTP clock API for delayed worker.
Vincent Cheng (3):
ptp: Add adjphase function to support phase offset control.
ptp: Add adjust_phase to ptp_clock_caps capability.
ptp: ptp_clockmatrix: Add adjphase() to support PHC write phase mode.
drivers/ptp/ptp_chardev.c | 1 +
drivers/ptp/ptp_clock.c | 3 ++
drivers/ptp/ptp_clockmatrix.c | 92 +++++++++++++++++++++++++++++++++++
drivers/ptp/ptp_clockmatrix.h | 8 ++-
include/linux/ptp_clock_kernel.h | 6 ++-
include/uapi/linux/ptp_clock.h | 4 +-
tools/testing/selftests/ptp/testptp.c | 6 ++-
7 files changed, 114 insertions(+), 6 deletions(-)
--
2.7.4
Add RSEQ, restartable sequence, support and related selftest to RISCV.
The Kconfig option HAVE_REGS_AND_STACK_ACCESS_API is also required by
RSEQ because RSEQ will modify the content of pt_regs.sepc through
instruction_pointer_set() during the fixup procedure. In order to select
the config HAVE_REGS_AND_STACK_ACCESS_API, the missing APIs for accessing
pt_regs are also added in this patch set.
The relevant RSEQ tests in kselftest require the Binutils patch "RISC-V:
Fix linker problems with TLS copy relocs" to avoid placing
PREINIT_ARRAY and TLS variable of librseq.so at the same address.
https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=commit;h=3e7bd7f…
A segmental fault will happen if binutils misses this patch.
Patrick Stählin (1):
riscv: add required functions to enable HAVE_REGS_AND_STACK_ACCESS_API
Vincent Chen (2):
riscv: Add support for restartable sequence
rseq/selftests: Add support for riscv
Changes since v1:
1. Use the correct register name to access pt_regs
arch/riscv/Kconfig | 2 +
arch/riscv/include/asm/ptrace.h | 29 +-
arch/riscv/kernel/entry.S | 4 +
arch/riscv/kernel/ptrace.c | 99 +++++
arch/riscv/kernel/signal.c | 2 +
tools/testing/selftests/rseq/param_test.c | 23 ++
tools/testing/selftests/rseq/rseq-riscv.h | 622 ++++++++++++++++++++++++++++++
tools/testing/selftests/rseq/rseq.h | 2 +
8 files changed, 782 insertions(+), 1 deletion(-)
create mode 100644 tools/testing/selftests/rseq/rseq-riscv.h
--
2.7.4
Hi,
This is v8 of syscall user dispatch. Last version got some acks but
there was one small documentation fix I wanted to do, as requested by
Florian. This also addresses the commit message fixup Peter requested.
The only actual code change from v7 is solving a trivial merge conflict
I myself created with the entry code fixup I made week and with
something else in the TIP tree.
I also shared this with glibc and there wasn't any complaints other than
the matter about user-notif vs. siginfo, which was discussed in v7 and
the understanding is that it is not necessary now and can be added
later, if needed, on the same infrastructure without a new api.
I'm not sure about TIP the rules, but is it too late to be queued for
the next merge window? I'd love to have this in 5.11 if possible, since
it has been flying for quite a while.
This is based on tip/master.
As usual, a working tree with this patchset is available at:
https://gitlab.collabora.com/krisman/linux -b syscall-user-dispatch-v8
Previous submissions are archived at:
RFC/v1: https://lkml.org/lkml/2020/7/8/96
v2: https://lkml.org/lkml/2020/7/9/17
v3: https://lkml.org/lkml/2020/7/12/4
v4: https://www.spinics.net/lists/linux-kselftest/msg16377.html
v5: https://lkml.org/lkml/2020/8/10/1320
v6: https://lkml.org/lkml/2020/9/4/1122
v7: https://lwn.net/Articles/837598/
Gabriel Krisman Bertazi (7):
x86: vdso: Expose sigreturn address on vdso to the kernel
signal: Expose SYS_USER_DISPATCH si_code type
kernel: Implement selective syscall userspace redirection
entry: Support Syscall User Dispatch on common syscall entry
selftests: Add kselftest for syscall user dispatch
selftests: Add benchmark for syscall user dispatch
docs: Document Syscall User Dispatch
.../admin-guide/syscall-user-dispatch.rst | 87 +++++
arch/x86/entry/vdso/vdso2c.c | 2 +
arch/x86/entry/vdso/vdso32/sigreturn.S | 2 +
arch/x86/entry/vdso/vma.c | 15 +
arch/x86/include/asm/elf.h | 2 +
arch/x86/include/asm/vdso.h | 2 +
arch/x86/kernel/signal_compat.c | 2 +-
fs/exec.c | 3 +
include/linux/entry-common.h | 2 +
include/linux/sched.h | 2 +
include/linux/syscall_user_dispatch.h | 40 +++
include/linux/thread_info.h | 2 +
include/uapi/asm-generic/siginfo.h | 3 +-
include/uapi/linux/prctl.h | 5 +
kernel/entry/Makefile | 2 +-
kernel/entry/common.c | 17 +
kernel/entry/common.h | 16 +
kernel/entry/syscall_user_dispatch.c | 102 ++++++
kernel/fork.c | 1 +
kernel/sys.c | 5 +
tools/testing/selftests/Makefile | 1 +
.../syscall_user_dispatch/.gitignore | 3 +
.../selftests/syscall_user_dispatch/Makefile | 9 +
.../selftests/syscall_user_dispatch/config | 1 +
.../syscall_user_dispatch/sud_benchmark.c | 200 +++++++++++
.../syscall_user_dispatch/sud_test.c | 310 ++++++++++++++++++
26 files changed, 833 insertions(+), 3 deletions(-)
create mode 100644 Documentation/admin-guide/syscall-user-dispatch.rst
create mode 100644 include/linux/syscall_user_dispatch.h
create mode 100644 kernel/entry/common.h
create mode 100644 kernel/entry/syscall_user_dispatch.c
create mode 100644 tools/testing/selftests/syscall_user_dispatch/.gitignore
create mode 100644 tools/testing/selftests/syscall_user_dispatch/Makefile
create mode 100644 tools/testing/selftests/syscall_user_dispatch/config
create mode 100644 tools/testing/selftests/syscall_user_dispatch/sud_benchmark.c
create mode 100644 tools/testing/selftests/syscall_user_dispatch/sud_test.c
--
2.29.2
From: Mike Rapoport <rppt(a)linux.ibm.com>
Hi,
@Andrew, this is based on v5.12-rc1, I can rebase whatever way you prefer.
This is an implementation of "secret" mappings backed by a file descriptor.
The file descriptor backing secret memory mappings is created using a
dedicated memfd_secret system call The desired protection mode for the
memory is configured using flags parameter of the system call. The mmap()
of the file descriptor created with memfd_secret() will create a "secret"
memory mapping. The pages in that mapping will be marked as not present in
the direct map and will be present only in the page table of the owning mm.
Although normally Linux userspace mappings are protected from other users,
such secret mappings are useful for environments where a hostile tenant is
trying to trick the kernel into giving them access to other tenants
mappings.
Additionally, in the future the secret mappings may be used as a mean to
protect guest memory in a virtual machine host.
For demonstration of secret memory usage we've created a userspace library
https://git.kernel.org/pub/scm/linux/kernel/git/jejb/secret-memory-preloade…
that does two things: the first is act as a preloader for openssl to
redirect all the OPENSSL_malloc calls to secret memory meaning any secret
keys get automatically protected this way and the other thing it does is
expose the API to the user who needs it. We anticipate that a lot of the
use cases would be like the openssl one: many toolkits that deal with
secret keys already have special handling for the memory to try to give
them greater protection, so this would simply be pluggable into the
toolkits without any need for user application modification.
Hiding secret memory mappings behind an anonymous file allows usage of
the page cache for tracking pages allocated for the "secret" mappings as
well as using address_space_operations for e.g. page migration callbacks.
The anonymous file may be also used implicitly, like hugetlb files, to
implement mmap(MAP_SECRET) and use the secret memory areas with "native" mm
ABIs in the future.
Removing of the pages from the direct map may cause its fragmentation on
architectures that use large pages to map the physical memory which affects
the system performance. However, the original Kconfig text for
CONFIG_DIRECT_GBPAGES said that gigabyte pages in the direct map "... can
improve the kernel's performance a tiny bit ..." (commit 00d1c5e05736
("x86: add gbpages switches")) and the recent report [1] showed that "...
although 1G mappings are a good default choice, there is no compelling
evidence that it must be the only choice". Hence, it is sufficient to have
secretmem disabled by default with the ability of a system administrator to
enable it at boot time.
In addition, there is also a long term goal to improve management of the
direct map.
[1] https://lore.kernel.org/linux-mm/213b4567-46ce-f116-9cdf-bbd0c884eb3c@linux…
v18:
* rebase on v5.12-rc1
* merge kfence fix into the original patch
* massage commit message of the patch introducing the memfd_secret syscall
v17: https://lore.kernel.org/lkml/20210208084920.2884-1-rppt@kernel.org
* Remove pool of large pages backing secretmem allocations, per Michal Hocko
* Add secretmem pages to unevictable LRU, per Michal Hocko
* Use GFP_HIGHUSER as secretmem mapping mask, per Michal Hocko
* Make secretmem an opt-in feature that is disabled by default
v16: https://lore.kernel.org/lkml/20210121122723.3446-1-rppt@kernel.org
* Fix memory leak intorduced in v15
* Clean the data left from previous page user before handing the page to
the userspace
v15: https://lore.kernel.org/lkml/20210120180612.1058-1-rppt@kernel.org
* Add riscv/Kconfig update to disable set_memory operations for nommu
builds (patch 3)
* Update the code around add_to_page_cache() per Matthew's comments
(patches 6,7)
* Add fixups for build/checkpatch errors discovered by CI systems
v14: https://lore.kernel.org/lkml/20201203062949.5484-1-rppt@kernel.org
* Finally s/mod_node_page_state/mod_lruvec_page_state/
v13: https://lore.kernel.org/lkml/20201201074559.27742-1-rppt@kernel.org
* Added Reviewed-by, thanks Catalin and David
* s/mod_node_page_state/mod_lruvec_page_state/ as Shakeel suggested
Older history:
v12: https://lore.kernel.org/lkml/20201125092208.12544-1-rppt@kernel.org
v11: https://lore.kernel.org/lkml/20201124092556.12009-1-rppt@kernel.org
v10: https://lore.kernel.org/lkml/20201123095432.5860-1-rppt@kernel.org
v9: https://lore.kernel.org/lkml/20201117162932.13649-1-rppt@kernel.org
v8: https://lore.kernel.org/lkml/20201110151444.20662-1-rppt@kernel.org
v7: https://lore.kernel.org/lkml/20201026083752.13267-1-rppt@kernel.org
v6: https://lore.kernel.org/lkml/20200924132904.1391-1-rppt@kernel.org
v5: https://lore.kernel.org/lkml/20200916073539.3552-1-rppt@kernel.org
v4: https://lore.kernel.org/lkml/20200818141554.13945-1-rppt@kernel.org
v3: https://lore.kernel.org/lkml/20200804095035.18778-1-rppt@kernel.org
v2: https://lore.kernel.org/lkml/20200727162935.31714-1-rppt@kernel.org
v1: https://lore.kernel.org/lkml/20200720092435.17469-1-rppt@kernel.org
rfc-v2: https://lore.kernel.org/lkml/20200706172051.19465-1-rppt@kernel.org/
rfc-v1: https://lore.kernel.org/lkml/20200130162340.GA14232@rapoport-lnx/
rfc-v0: https://lore.kernel.org/lkml/1572171452-7958-1-git-send-email-rppt@kernel.o…
Mike Rapoport (9):
mm: add definition of PMD_PAGE_ORDER
mmap: make mlock_future_check() global
riscv/Kconfig: make direct map manipulation options depend on MMU
set_memory: allow set_direct_map_*_noflush() for multiple pages
set_memory: allow querying whether set_direct_map_*() is actually enabled
mm: introduce memfd_secret system call to create "secret" memory areas
PM: hibernate: disable when there are active secretmem users
arch, mm: wire up memfd_secret system call where relevant
secretmem: test: add basic selftest for memfd_secret(2)
arch/arm64/include/asm/Kbuild | 1 -
arch/arm64/include/asm/cacheflush.h | 6 -
arch/arm64/include/asm/kfence.h | 2 +-
arch/arm64/include/asm/set_memory.h | 17 ++
arch/arm64/include/uapi/asm/unistd.h | 1 +
arch/arm64/kernel/machine_kexec.c | 1 +
arch/arm64/mm/mmu.c | 6 +-
arch/arm64/mm/pageattr.c | 23 +-
arch/riscv/Kconfig | 4 +-
arch/riscv/include/asm/set_memory.h | 4 +-
arch/riscv/include/asm/unistd.h | 1 +
arch/riscv/mm/pageattr.c | 8 +-
arch/x86/entry/syscalls/syscall_32.tbl | 1 +
arch/x86/entry/syscalls/syscall_64.tbl | 1 +
arch/x86/include/asm/set_memory.h | 4 +-
arch/x86/mm/pat/set_memory.c | 8 +-
fs/dax.c | 11 +-
include/linux/pgtable.h | 3 +
include/linux/secretmem.h | 30 +++
include/linux/set_memory.h | 16 +-
include/linux/syscalls.h | 1 +
include/uapi/asm-generic/unistd.h | 6 +-
include/uapi/linux/magic.h | 1 +
kernel/power/hibernate.c | 5 +-
kernel/power/snapshot.c | 4 +-
kernel/sys_ni.c | 2 +
mm/Kconfig | 3 +
mm/Makefile | 1 +
mm/gup.c | 10 +
mm/internal.h | 3 +
mm/mlock.c | 3 +-
mm/mmap.c | 5 +-
mm/secretmem.c | 261 +++++++++++++++++++
mm/vmalloc.c | 5 +-
scripts/checksyscalls.sh | 4 +
tools/testing/selftests/vm/.gitignore | 1 +
tools/testing/selftests/vm/Makefile | 3 +-
tools/testing/selftests/vm/memfd_secret.c | 296 ++++++++++++++++++++++
tools/testing/selftests/vm/run_vmtests.sh | 17 ++
39 files changed, 726 insertions(+), 53 deletions(-)
create mode 100644 arch/arm64/include/asm/set_memory.h
create mode 100644 include/linux/secretmem.h
create mode 100644 mm/secretmem.c
create mode 100644 tools/testing/selftests/vm/memfd_secret.c
--
2.28.0
Clang's integrated assembler does not allow symbols with non-absolute
values to be reassigned. Modify the interrupt entry loop macro to be
compatible with IAS by using a label and an offset.
Cc: Jian Cai <caij2003(a)gmail.com>
Signed-off-by: Bill Wendling <morbo(a)google.com>
References: https://lore.kernel.org/lkml/20200714233024.1789985-1-caij2003@gmail.com/
---
tools/testing/selftests/kvm/lib/x86_64/handlers.S | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/tools/testing/selftests/kvm/lib/x86_64/handlers.S b/tools/testing/selftests/kvm/lib/x86_64/handlers.S
index aaf7bc7d2ce1..3f9181e9a0a7 100644
--- a/tools/testing/selftests/kvm/lib/x86_64/handlers.S
+++ b/tools/testing/selftests/kvm/lib/x86_64/handlers.S
@@ -54,9 +54,9 @@ idt_handlers:
.align 8
/* Fetch current address and append it to idt_handlers. */
- current_handler = .
+0 :
.pushsection .rodata
-.quad current_handler
+ .quad 0b
.popsection
.if ! \has_error
--
2.29.2.576.ga3fc446d84-goog