Changelog RFC v4 --> PATCH v5:
1. Added a CPU online check prior to parsing the CPU topology to avoid
parsing topologies for CPUs unavailable for the latency test
2. Added comment describing the selftest in cpuidle.sh
As I have made changes to cpuidle.sh's working, hence dropping
"Reviewed-by" from Doug Smythies for the second patch, while retaining
it for the first patch.
RFC v4: https://lkml.org/lkml/2021/4/12/99
---
A kernel module + userspace driver to estimate the wakeup latency
caused by going into stop states. The motivation behind this program is
to find significant deviations behind advertised latency and residency
values.
The patchset measures latencies for two kinds of events. IPIs and Timers
As this is a software-only mechanism, there will additional latencies of
the kernel-firmware-hardware interactions. To account for that, the
program also measures a baseline latency on a 100 percent loaded CPU
and the latencies achieved must be in view relative to that.
To achieve this, we introduce a kernel module and expose its control
knobs through the debugfs interface that the selftests can engage with.
The kernel module provides the following interfaces within
/sys/kernel/debug/latency_test/ for,
IPI test:
ipi_cpu_dest = Destination CPU for the IPI
ipi_cpu_src = Origin of the IPI
ipi_latency_ns = Measured latency time in ns
Timeout test:
timeout_cpu_src = CPU on which the timer to be queued
timeout_expected_ns = Timer duration
timeout_diff_ns = Difference of actual duration vs expected timer
Sample output on a POWER9 system is as follows:
# --IPI Latency Test---
# Baseline Average IPI latency(ns): 3114
# Observed Average IPI latency(ns) - State0: 3265
# Observed Average IPI latency(ns) - State1: 3507
# Observed Average IPI latency(ns) - State2: 3739
# Observed Average IPI latency(ns) - State3: 3807
# Observed Average IPI latency(ns) - State4: 17070
# Observed Average IPI latency(ns) - State5: 1038174
# Observed Average IPI latency(ns) - State6: 1068784
#
# --Timeout Latency Test--
# Baseline Average timeout diff(ns): 1420
# Observed Average timeout diff(ns) - State0: 1640
# Observed Average timeout diff(ns) - State1: 1764
# Observed Average timeout diff(ns) - State2: 1715
# Observed Average timeout diff(ns) - State3: 1845
# Observed Average timeout diff(ns) - State4: 16581
# Observed Average timeout diff(ns) - State5: 939977
# Observed Average timeout diff(ns) - State6: 1073024
Things to keep in mind:
1. This kernel module + bash driver does not guarantee idleness on a
core when the IPI and the Timer is armed. It only invokes sleep and
hopes that the core is idle once the IPI/Timer is invoked onto it.
Hence this program must be run on a completely idle system for best
results
2. Even on a completely idle system, there maybe book-keeping tasks or
jitter tasks that can run on the core we want idle. This can create
outliers in the latency measurement. Thankfully, these outliers
should be large enough to easily weed them out.
3. A userspace only selftest variant was also sent out as RFC based on
suggestions over the previous patchset to simply the kernel
complexeity. However, a userspace only approach had more noise in
the latency measurement due to userspace-kernel interactions
which led to run to run variance and a lesser accurate test.
Another downside of the nature of a userspace program is that it
takes orders of magnitude longer to complete a full system test
compared to the kernel framework.
RFC patch: https://lkml.org/lkml/2020/9/2/356
4. For Intel Systems, the Timer based latencies don't exactly give out
the measure of idle latencies. This is because of a hardware
optimization mechanism that pre-arms a CPU when a timer is set to
wakeup. That doesn't make this metric useless for Intel systems,
it just means that is measuring IPI/Timer responding latency rather
than idle wakeup latencies.
(Source: https://lkml.org/lkml/2020/9/2/610)
For solution to this problem, a hardware based latency analyzer is
devised by Artem Bityutskiy from Intel.
https://youtu.be/Opk92aQyvt0?t=8266https://intel.github.io/wult/
Pratik R. Sampat (2):
cpuidle: Extract IPI based and timer based wakeup latency from idle
states
selftest/cpuidle: Add support for cpuidle latency measurement
drivers/cpuidle/Makefile | 1 +
drivers/cpuidle/test-cpuidle_latency.c | 157 ++++++++
lib/Kconfig.debug | 10 +
tools/testing/selftests/Makefile | 1 +
tools/testing/selftests/cpuidle/Makefile | 6 +
tools/testing/selftests/cpuidle/cpuidle.sh | 414 +++++++++++++++++++++
tools/testing/selftests/cpuidle/settings | 2 +
7 files changed, 591 insertions(+)
create mode 100644 drivers/cpuidle/test-cpuidle_latency.c
create mode 100644 tools/testing/selftests/cpuidle/Makefile
create mode 100755 tools/testing/selftests/cpuidle/cpuidle.sh
create mode 100644 tools/testing/selftests/cpuidle/settings
--
2.17.1
If the xfrm_policy.sh script gets terminated by any reason, the netns
namespace files created by the test will be left alone.
In this case a second attempt to run this test will fail with:
# Cannot create namespace file "/run/netns/ns1": File exists
Move the netns cleanup code into an exit trap so that we can ensure
these files will be removed in the end.
Changes in V2:
- Update commit message and patch title.
Signed-off-by: Po-Hsu Lin <po-hsu.lin(a)canonical.com>
---
tools/testing/selftests/net/xfrm_policy.sh | 7 +++++--
1 file changed, 5 insertions(+), 2 deletions(-)
diff --git a/tools/testing/selftests/net/xfrm_policy.sh b/tools/testing/selftests/net/xfrm_policy.sh
index bdf450e..bb4632b 100755
--- a/tools/testing/selftests/net/xfrm_policy.sh
+++ b/tools/testing/selftests/net/xfrm_policy.sh
@@ -28,6 +28,11 @@ KEY_AES=0x0123456789abcdef0123456789012345
SPI1=0x1
SPI2=0x2
+cleanup() {
+ for i in 1 2 3 4;do ip netns del ns$i 2>/dev/null ;done
+}
+trap cleanup EXIT
+
do_esp_policy() {
local ns=$1
local me=$2
@@ -481,6 +486,4 @@ check_hthresh_repeat "policies with repeated htresh change"
check_random_order ns3 "policies inserted in random order"
-for i in 1 2 3 4;do ip netns del ns$i;done
-
exit $ret
--
2.7.4
This patchset provides a file descriptor for every VM and VCPU to read
KVM statistics data in binary format.
It is meant to provide a lightweight, flexible, scalable and efficient
lock-free solution for user space telemetry applications to pull the
statistics data periodically for large scale systems. The pulling
frequency could be as high as a few times per second.
In this patchset, every statistics data are treated to have some
attributes as below:
* architecture dependent or common
* VM statistics data or VCPU statistics data
* type: cumulative, instantaneous,
* unit: none for simple counter, nanosecond, microsecond,
millisecond, second, Byte, KiByte, MiByte, GiByte. Clock Cycles
Since no lock/synchronization is used, the consistency between all
the statistics data is not guaranteed. That means not all statistics
data are read out at the exact same time, since the statistics date
are still being updated by KVM subsystems while they are read out.
---
* v3 -> v4
- Rebase to kvm/queue, commit 9f242010c3b4 ("KVM: avoid "deadlock"
between install_new_memslots and MMU notifier")
- Use C-stype comments in the whole patch
- Fix wrong count for x86 VCPU stats descriptors
- Fix KVM stats data size counting and validity check in selftest
* v2 -> v3
- Rebase to kvm/queue, commit edf408f5257b ("KVM: avoid "deadlock"
between install_new_memslots and MMU notifier")
- Resolve some nitpicks about format
* v1 -> v2
- Use ARRAY_SIZE to count the number of stats descriptors
- Fix missing `size` field initialization in macro STATS_DESC
[1] https://lore.kernel.org/kvm/20210402224359.2297157-1-jingzhangos@google.com
[2] https://lore.kernel.org/kvm/20210415151741.1607806-1-jingzhangos@google.com
[3] https://lore.kernel.org/kvm/20210423181727.596466-1-jingzhangos@google.com
---
Jing Zhang (4):
KVM: stats: Separate common stats from architecture specific ones
KVM: stats: Add fd-based API to read binary stats data
KVM: stats: Add documentation for statistics data binary interface
KVM: selftests: Add selftest for KVM statistics data binary interface
Documentation/virt/kvm/api.rst | 171 ++++++++
arch/arm64/include/asm/kvm_host.h | 9 +-
arch/arm64/kvm/guest.c | 42 +-
arch/mips/include/asm/kvm_host.h | 9 +-
arch/mips/kvm/mips.c | 67 ++-
arch/powerpc/include/asm/kvm_host.h | 9 +-
arch/powerpc/kvm/book3s.c | 68 +++-
arch/powerpc/kvm/book3s_hv.c | 12 +-
arch/powerpc/kvm/book3s_pr.c | 2 +-
arch/powerpc/kvm/book3s_pr_papr.c | 2 +-
arch/powerpc/kvm/booke.c | 63 ++-
arch/s390/include/asm/kvm_host.h | 9 +-
arch/s390/kvm/kvm-s390.c | 133 +++++-
arch/x86/include/asm/kvm_host.h | 9 +-
arch/x86/kvm/x86.c | 71 +++-
include/linux/kvm_host.h | 132 +++++-
include/linux/kvm_types.h | 12 +
include/uapi/linux/kvm.h | 50 +++
tools/testing/selftests/kvm/.gitignore | 1 +
tools/testing/selftests/kvm/Makefile | 3 +
.../testing/selftests/kvm/include/kvm_util.h | 3 +
.../selftests/kvm/kvm_bin_form_stats.c | 380 ++++++++++++++++++
tools/testing/selftests/kvm/lib/kvm_util.c | 11 +
virt/kvm/kvm_main.c | 237 ++++++++++-
24 files changed, 1415 insertions(+), 90 deletions(-)
create mode 100644 tools/testing/selftests/kvm/kvm_bin_form_stats.c
base-commit: 9f242010c3b46e63bc62f08fff42cef992d3801b
--
2.31.1.527.g47e6f16901-goog
From: Mike Rapoport <rppt(a)linux.ibm.com>
Hi,
@Andrew, this is based on v5.12-rc1, I can rebase whatever way you prefer.
This is an implementation of "secret" mappings backed by a file descriptor.
The file descriptor backing secret memory mappings is created using a
dedicated memfd_secret system call The desired protection mode for the
memory is configured using flags parameter of the system call. The mmap()
of the file descriptor created with memfd_secret() will create a "secret"
memory mapping. The pages in that mapping will be marked as not present in
the direct map and will be present only in the page table of the owning mm.
Although normally Linux userspace mappings are protected from other users,
such secret mappings are useful for environments where a hostile tenant is
trying to trick the kernel into giving them access to other tenants
mappings.
Additionally, in the future the secret mappings may be used as a mean to
protect guest memory in a virtual machine host.
For demonstration of secret memory usage we've created a userspace library
https://git.kernel.org/pub/scm/linux/kernel/git/jejb/secret-memory-preloade…
that does two things: the first is act as a preloader for openssl to
redirect all the OPENSSL_malloc calls to secret memory meaning any secret
keys get automatically protected this way and the other thing it does is
expose the API to the user who needs it. We anticipate that a lot of the
use cases would be like the openssl one: many toolkits that deal with
secret keys already have special handling for the memory to try to give
them greater protection, so this would simply be pluggable into the
toolkits without any need for user application modification.
Hiding secret memory mappings behind an anonymous file allows usage of
the page cache for tracking pages allocated for the "secret" mappings as
well as using address_space_operations for e.g. page migration callbacks.
The anonymous file may be also used implicitly, like hugetlb files, to
implement mmap(MAP_SECRET) and use the secret memory areas with "native" mm
ABIs in the future.
Removing of the pages from the direct map may cause its fragmentation on
architectures that use large pages to map the physical memory which affects
the system performance. However, the original Kconfig text for
CONFIG_DIRECT_GBPAGES said that gigabyte pages in the direct map "... can
improve the kernel's performance a tiny bit ..." (commit 00d1c5e05736
("x86: add gbpages switches")) and the recent report [1] showed that "...
although 1G mappings are a good default choice, there is no compelling
evidence that it must be the only choice". Hence, it is sufficient to have
secretmem disabled by default with the ability of a system administrator to
enable it at boot time.
In addition, there is also a long term goal to improve management of the
direct map.
[1] https://lore.kernel.org/linux-mm/213b4567-46ce-f116-9cdf-bbd0c884eb3c@linux…
v18:
* rebase on v5.12-rc1
* merge kfence fix into the original patch
* massage commit message of the patch introducing the memfd_secret syscall
v17: https://lore.kernel.org/lkml/20210208084920.2884-1-rppt@kernel.org
* Remove pool of large pages backing secretmem allocations, per Michal Hocko
* Add secretmem pages to unevictable LRU, per Michal Hocko
* Use GFP_HIGHUSER as secretmem mapping mask, per Michal Hocko
* Make secretmem an opt-in feature that is disabled by default
v16: https://lore.kernel.org/lkml/20210121122723.3446-1-rppt@kernel.org
* Fix memory leak intorduced in v15
* Clean the data left from previous page user before handing the page to
the userspace
v15: https://lore.kernel.org/lkml/20210120180612.1058-1-rppt@kernel.org
* Add riscv/Kconfig update to disable set_memory operations for nommu
builds (patch 3)
* Update the code around add_to_page_cache() per Matthew's comments
(patches 6,7)
* Add fixups for build/checkpatch errors discovered by CI systems
v14: https://lore.kernel.org/lkml/20201203062949.5484-1-rppt@kernel.org
* Finally s/mod_node_page_state/mod_lruvec_page_state/
v13: https://lore.kernel.org/lkml/20201201074559.27742-1-rppt@kernel.org
* Added Reviewed-by, thanks Catalin and David
* s/mod_node_page_state/mod_lruvec_page_state/ as Shakeel suggested
Older history:
v12: https://lore.kernel.org/lkml/20201125092208.12544-1-rppt@kernel.org
v11: https://lore.kernel.org/lkml/20201124092556.12009-1-rppt@kernel.org
v10: https://lore.kernel.org/lkml/20201123095432.5860-1-rppt@kernel.org
v9: https://lore.kernel.org/lkml/20201117162932.13649-1-rppt@kernel.org
v8: https://lore.kernel.org/lkml/20201110151444.20662-1-rppt@kernel.org
v7: https://lore.kernel.org/lkml/20201026083752.13267-1-rppt@kernel.org
v6: https://lore.kernel.org/lkml/20200924132904.1391-1-rppt@kernel.org
v5: https://lore.kernel.org/lkml/20200916073539.3552-1-rppt@kernel.org
v4: https://lore.kernel.org/lkml/20200818141554.13945-1-rppt@kernel.org
v3: https://lore.kernel.org/lkml/20200804095035.18778-1-rppt@kernel.org
v2: https://lore.kernel.org/lkml/20200727162935.31714-1-rppt@kernel.org
v1: https://lore.kernel.org/lkml/20200720092435.17469-1-rppt@kernel.org
rfc-v2: https://lore.kernel.org/lkml/20200706172051.19465-1-rppt@kernel.org/
rfc-v1: https://lore.kernel.org/lkml/20200130162340.GA14232@rapoport-lnx/
rfc-v0: https://lore.kernel.org/lkml/1572171452-7958-1-git-send-email-rppt@kernel.o…
Mike Rapoport (9):
mm: add definition of PMD_PAGE_ORDER
mmap: make mlock_future_check() global
riscv/Kconfig: make direct map manipulation options depend on MMU
set_memory: allow set_direct_map_*_noflush() for multiple pages
set_memory: allow querying whether set_direct_map_*() is actually enabled
mm: introduce memfd_secret system call to create "secret" memory areas
PM: hibernate: disable when there are active secretmem users
arch, mm: wire up memfd_secret system call where relevant
secretmem: test: add basic selftest for memfd_secret(2)
arch/arm64/include/asm/Kbuild | 1 -
arch/arm64/include/asm/cacheflush.h | 6 -
arch/arm64/include/asm/kfence.h | 2 +-
arch/arm64/include/asm/set_memory.h | 17 ++
arch/arm64/include/uapi/asm/unistd.h | 1 +
arch/arm64/kernel/machine_kexec.c | 1 +
arch/arm64/mm/mmu.c | 6 +-
arch/arm64/mm/pageattr.c | 23 +-
arch/riscv/Kconfig | 4 +-
arch/riscv/include/asm/set_memory.h | 4 +-
arch/riscv/include/asm/unistd.h | 1 +
arch/riscv/mm/pageattr.c | 8 +-
arch/x86/entry/syscalls/syscall_32.tbl | 1 +
arch/x86/entry/syscalls/syscall_64.tbl | 1 +
arch/x86/include/asm/set_memory.h | 4 +-
arch/x86/mm/pat/set_memory.c | 8 +-
fs/dax.c | 11 +-
include/linux/pgtable.h | 3 +
include/linux/secretmem.h | 30 +++
include/linux/set_memory.h | 16 +-
include/linux/syscalls.h | 1 +
include/uapi/asm-generic/unistd.h | 6 +-
include/uapi/linux/magic.h | 1 +
kernel/power/hibernate.c | 5 +-
kernel/power/snapshot.c | 4 +-
kernel/sys_ni.c | 2 +
mm/Kconfig | 3 +
mm/Makefile | 1 +
mm/gup.c | 10 +
mm/internal.h | 3 +
mm/mlock.c | 3 +-
mm/mmap.c | 5 +-
mm/secretmem.c | 261 +++++++++++++++++++
mm/vmalloc.c | 5 +-
scripts/checksyscalls.sh | 4 +
tools/testing/selftests/vm/.gitignore | 1 +
tools/testing/selftests/vm/Makefile | 3 +-
tools/testing/selftests/vm/memfd_secret.c | 296 ++++++++++++++++++++++
tools/testing/selftests/vm/run_vmtests.sh | 17 ++
39 files changed, 726 insertions(+), 53 deletions(-)
create mode 100644 arch/arm64/include/asm/set_memory.h
create mode 100644 include/linux/secretmem.h
create mode 100644 mm/secretmem.c
create mode 100644 tools/testing/selftests/vm/memfd_secret.c
--
2.28.0
Explicitly include stddef.h when building the BTI tests so that we have
a definition of NULL, with at least some toolchains this is not done
implicitly by anything else:
test.c: In function ‘start’:
test.c:214:25: error: ‘NULL’ undeclared (first use in this function)
214 | sigaction(SIGILL, &sa, NULL);
| ^~~~
test.c:20:1: note: ‘NULL’ is defined in header ‘<stddef.h>’; did you forget to ‘#include <stddef.h>’?
Signed-off-by: Mark Brown <broonie(a)kernel.org>
---
tools/testing/selftests/arm64/bti/test.c | 1 +
1 file changed, 1 insertion(+)
diff --git a/tools/testing/selftests/arm64/bti/test.c b/tools/testing/selftests/arm64/bti/test.c
index 656b04976ccc..67b77ab83c20 100644
--- a/tools/testing/selftests/arm64/bti/test.c
+++ b/tools/testing/selftests/arm64/bti/test.c
@@ -6,6 +6,7 @@
#include "system.h"
+#include <stddef.h>
#include <linux/errno.h>
#include <linux/auxvec.h>
#include <linux/signal.h>
--
2.20.1
The result of an expression consisting of a single relational operator is
already of the bool type and does not need to be evaluated explicitly.
No functional change.
Signed-off-by: Zhen Lei <thunder.leizhen(a)huawei.com>
---
tools/testing/selftests/mount/unprivileged-remount-test.c | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/tools/testing/selftests/mount/unprivileged-remount-test.c b/tools/testing/selftests/mount/unprivileged-remount-test.c
index 584dc6bc3b06679..d2917054fe3ae56 100644
--- a/tools/testing/selftests/mount/unprivileged-remount-test.c
+++ b/tools/testing/selftests/mount/unprivileged-remount-test.c
@@ -204,7 +204,7 @@ bool test_unpriv_remount(const char *fstype, const char *mount_options,
if (!WIFEXITED(status)) {
die("child did not terminate cleanly\n");
}
- return WEXITSTATUS(status) == EXIT_SUCCESS ? true : false;
+ return WEXITSTATUS(status) == EXIT_SUCCESS;
}
create_and_enter_userns();
@@ -282,7 +282,7 @@ static bool test_priv_mount_unpriv_remount(void)
if (!WIFEXITED(status)) {
die("child did not terminate cleanly\n");
}
- return WEXITSTATUS(status) == EXIT_SUCCESS ? true : false;
+ return WEXITSTATUS(status) == EXIT_SUCCESS;
}
orig_mnt_flags = read_mnt_flags(orig_path);
--
2.26.0.106.g9fadedd