KUnit tests run in a kthread, with the current->kunit_test pointer set
to the test's context. This allows the kunit_get_current_test() and
kunit_fail_current_test() macros to work. Normally, this pointer is
still valid during test shutdown (i.e., the suite->exit function, and
any resource cleanup). However, if the test has exited early (e.g., due
to a failed assertion), the cleanup is done in the parent KUnit thread,
which does not have an active context.
Instead, in the event test terminates early, run the test exit and
cleanup from a new 'cleanup' kthread, which sets current->kunit_test,
and better isolates the rest of KUnit from issues which arise in test
cleanup.
If a test cleanup function itself aborts (e.g., due to an assertion
failing), there will be no further attempts to clean up: an error will
be logged and the test failed.
This should also make it easier to get access to the KUnit context,
particularly from within resource cleanup functions, which may, for
example, need access to data in test->priv.
Signed-off-by: David Gow <davidgow(a)google.com>
---
This is an updated version of / replacement of "kunit: Set the current
KUnit context when cleaning up", which instead creates a new kthread
for cleanup tasks if the original test kthread is aborted. This protects
us from failed assertions during cleanup, if the test exited early.
Changes since v1:
https://lore.kernel.org/linux-kselftest/20230415091401.681395-1-davidgow@go…
- Move cleanup execution to another kthread
- (Thanks, Benjamin, for pointing out the assertion issues)
---
lib/kunit/test.c | 54 ++++++++++++++++++++++++++++++++++++++++++++++--
1 file changed, 52 insertions(+), 2 deletions(-)
diff --git a/lib/kunit/test.c b/lib/kunit/test.c
index e2910b261112..caeae0dfd82b 100644
--- a/lib/kunit/test.c
+++ b/lib/kunit/test.c
@@ -423,8 +423,51 @@ static void kunit_try_run_case(void *data)
kunit_run_case_cleanup(test, suite);
}
+static void kunit_try_run_case_cleanup(void *data)
+{
+ struct kunit_try_catch_context *ctx = data;
+ struct kunit *test = ctx->test;
+ struct kunit_suite *suite = ctx->suite;
+
+ current->kunit_test = test;
+
+ kunit_run_case_cleanup(test, suite);
+}
+
+static void kunit_catch_run_case_cleanup(void *data)
+{
+ struct kunit_try_catch_context *ctx = data;
+ struct kunit *test = ctx->test;
+ int try_exit_code = kunit_try_catch_get_result(&test->try_catch);
+
+ /* It is always a failure if cleanup aborts. */
+ kunit_set_failure(test);
+
+ if (try_exit_code) {
+ /*
+ * Test case could not finish, we have no idea what state it is
+ * in, so don't do clean up.
+ */
+ if (try_exit_code == -ETIMEDOUT) {
+ kunit_err(test, "test case cleanup timed out\n");
+ /*
+ * Unknown internal error occurred preventing test case from
+ * running, so there is nothing to clean up.
+ */
+ } else {
+ kunit_err(test, "internal error occurred during test case cleanup: %d\n",
+ try_exit_code);
+ }
+ return;
+ }
+
+ kunit_err(test, "test aborted during cleanup. continuing without cleaning up\n");
+}
+
+
static void kunit_catch_run_case(void *data)
{
+ struct kunit_try_catch cleanup;
struct kunit_try_catch_context *ctx = data;
struct kunit *test = ctx->test;
struct kunit_suite *suite = ctx->suite;
@@ -451,9 +494,16 @@ static void kunit_catch_run_case(void *data)
/*
* Test case was run, but aborted. It is the test case's business as to
- * whether it failed or not, we just need to clean up.
+ * whether it failed or not, we just need to clean up. Do this in a new
+ * try / catch context, in case it asserts, too.
*/
- kunit_run_case_cleanup(test, suite);
+ kunit_try_catch_init(&cleanup,
+ test,
+ kunit_try_run_case_cleanup,
+ kunit_catch_run_case_cleanup);
+ ctx->test = test;
+ ctx->suite = suite;
+ kunit_try_catch_run(&cleanup, ctx);
}
/*
--
2.40.0.634.g4ca3ef3211-goog
*Changes in v15*
- Build fix
*Changes in v14*
- Fix build error caused by #ifdef added at last minute in some configs
*Changes in v13*
- Rebase on top of next-20230414
- Give-up on using uffd_wp_range() and write new helpers, flush tlb only
once
*Changes in v12*
- Update and other memory types to UFFD_FEATURE_WP_ASYNC
- Rebaase on top of next-20230406
- Review updates
*Changes in v11*
- Rebase on top of next-20230307
- Base patches on UFFD_FEATURE_WP_UNPOPULATED
- Do a lot of cosmetic changes and review updates
- Remove ENGAGE_WP + !GET operation as it can be performed with
UFFDIO_WRITEPROTECT
*Changes in v10*
- Add specific condition to return error if hugetlb is used with wp
async
- Move changes in tools/include/uapi/linux/fs.h to separate patch
- Add documentation
*Changes in v9:*
- Correct fault resolution for userfaultfd wp async
- Fix build warnings and errors which were happening on some configs
- Simplify pagemap ioctl's code
*Changes in v8:*
- Update uffd async wp implementation
- Improve PAGEMAP_IOCTL implementation
*Changes in v7:*
- Add uffd wp async
- Update the IOCTL to use uffd under the hood instead of soft-dirty
flags
*Motivation*
The real motivation for adding PAGEMAP_SCAN IOCTL is to emulate Windows
GetWriteWatch() syscall [1]. The GetWriteWatch{} retrieves the addresses of
the pages that are written to in a region of virtual memory.
This syscall is used in Windows applications and games etc. This syscall is
being emulated in pretty slow manner in userspace. Our purpose is to
enhance the kernel such that we translate it efficiently in a better way.
Currently some out of tree hack patches are being used to efficiently
emulate it in some kernels. We intend to replace those with these patches.
So the whole gaming on Linux can effectively get benefit from this. It
means there would be tons of users of this code.
CRIU use case [2] was mentioned by Andrei and Danylo:
> Use cases for migrating sparse VMAs are binaries sanitized with ASAN,
> MSAN or TSAN [3]. All of these sanitizers produce sparse mappings of
> shadow memory [4]. Being able to migrate such binaries allows to highly
> reduce the amount of work needed to identify and fix post-migration
> crashes, which happen constantly.
Andrei's defines the following uses of this code:
* it is more granular and allows us to track changed pages more
effectively. The current interface can clear dirty bits for the entire
process only. In addition, reading info about pages is a separate
operation. It means we must freeze the process to read information
about all its pages, reset dirty bits, only then we can start dumping
pages. The information about pages becomes more and more outdated,
while we are processing pages. The new interface solves both these
downsides. First, it allows us to read pte bits and clear the
soft-dirty bit atomically. It means that CRIU will not need to freeze
processes to pre-dump their memory. Second, it clears soft-dirty bits
for a specified region of memory. It means CRIU will have actual info
about pages to the moment of dumping them.
* The new interface has to be much faster because basic page filtering
is happening in the kernel. With the old interface, we have to read
pagemap for each page.
*Implementation Evolution (Short Summary)*
From the definition of GetWriteWatch(), we feel like kernel's soft-dirty
feature can be used under the hood with some additions like:
* reset soft-dirty flag for only a specific region of memory instead of
clearing the flag for the entire process
* get and clear soft-dirty flag for a specific region atomically
So we decided to use ioctl on pagemap file to read or/and reset soft-dirty
flag. But using soft-dirty flag, sometimes we get extra pages which weren't
even written. They had become soft-dirty because of VMA merging and
VM_SOFTDIRTY flag. This breaks the definition of GetWriteWatch(). We were
able to by-pass this short coming by ignoring VM_SOFTDIRTY until David
reported that mprotect etc messes up the soft-dirty flag while ignoring
VM_SOFTDIRTY [5]. This wasn't happening until [6] got introduced. We
discussed if we can revert these patches. But we could not reach to any
conclusion. So at this point, I made couple of tries to solve this whole
VM_SOFTDIRTY issue by correcting the soft-dirty implementation:
* [7] Correct the bug fixed wrongly back in 2014. It had potential to cause
regression. We left it behind.
* [8] Keep a list of soft-dirty part of a VMA across splits and merges. I
got the reply don't increase the size of the VMA by 8 bytes.
At this point, we left soft-dirty considering it is too much delicate and
userfaultfd [9] seemed like the only way forward. From there onward, we
have been basing soft-dirty emulation on userfaultfd wp feature where
kernel resolves the faults itself when WP_ASYNC feature is used. It was
straight forward to add WP_ASYNC feature in userfautlfd. Now we get only
those pages dirty or written-to which are really written in reality. (PS
There is another WP_UNPOPULATED userfautfd feature is required which is
needed to avoid pre-faulting memory before write-protecting [9].)
All the different masks were added on the request of CRIU devs to create
interface more generic and better.
[1] https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-…
[2] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com
[3] https://github.com/google/sanitizers
[4] https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm#64-bit
[5] https://lore.kernel.org/all/bfcae708-db21-04b4-0bbe-712badd03071@redhat.com
[6] https://lore.kernel.org/all/20220725142048.30450-1-peterx@redhat.com/
[7] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.…
[8] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.…
[9] https://lore.kernel.org/all/20230306213925.617814-1-peterx@redhat.com
[10] https://lore.kernel.org/all/20230125144529.1630917-1-mdanylo@google.com
* Original Cover letter from v8*
Hello,
Note:
Soft-dirty pages and pages which have been written-to are synonyms. As
kernel already has soft-dirty feature inside which we have given up to
use, we are using written-to terminology while using UFFD async WP under
the hood.
This IOCTL, PAGEMAP_SCAN on pagemap file can be used to get and/or clear
the info about page table entries. The following operations are
supported in this ioctl:
- Get the information if the pages have been written-to (PAGE_IS_WRITTEN),
file mapped (PAGE_IS_FILE), present (PAGE_IS_PRESENT) or swapped
(PAGE_IS_SWAPPED).
- Write-protect the pages (PAGEMAP_WP_ENGAGE) to start finding which
pages have been written-to.
- Find pages which have been written-to and write protect the pages
(atomic PAGE_IS_WRITTEN + PAGEMAP_WP_ENGAGE)
It is possible to find and clear soft-dirty pages entirely in userspace.
But it isn't efficient:
- The mprotect and SIGSEGV handler for bookkeeping
- The userfaultfd wp (synchronous) with the handler for bookkeeping
Some benchmarks can be seen here[1]. This series adds features that weren't
present earlier:
- There is no atomic get soft-dirty/Written-to status and clear present in
the kernel.
- The pages which have been written-to can not be found in accurate way.
(Kernel's soft-dirty PTE bit + sof_dirty VMA bit shows more soft-dirty
pages than there actually are.)
Historically, soft-dirty PTE bit tracking has been used in the CRIU
project. The procfs interface is enough for finding the soft-dirty bit
status and clearing the soft-dirty bit of all the pages of a process.
We have the use case where we need to track the soft-dirty PTE bit for
only specific pages on-demand. We need this tracking and clear mechanism
of a region of memory while the process is running to emulate the
getWriteWatch() syscall of Windows.
*(Moved to using UFFD instead of soft-dirtyi feature to find pages which
have been written-to from v7 patch series)*:
Stop using the soft-dirty flags for finding which pages have been
written to. It is too delicate and wrong as it shows more soft-dirty
pages than the actual soft-dirty pages. There is no interest in
correcting it [2][3] as this is how the feature was written years ago.
It shouldn't be updated to changed behaviour. Peter Xu has suggested
using the async version of the UFFD WP [4] as it is based inherently
on the PTEs.
So in this patch series, I've added a new mode to the UFFD which is
asynchronous version of the write protect. When this variant of the
UFFD WP is used, the page faults are resolved automatically by the
kernel. The pages which have been written-to can be found by reading
pagemap file (!PM_UFFD_WP). This feature can be used successfully to
find which pages have been written to from the time the pages were
write protected. This works just like the soft-dirty flag without
showing any extra pages which aren't soft-dirty in reality.
The information related to pages if the page is file mapped, present and
swapped is required for the CRIU project [5][6]. The addition of the
required mask, any mask, excluded mask and return masks are also required
for the CRIU project [5].
The IOCTL returns the addresses of the pages which match the specific
masks. The page addresses are returned in struct page_region in a compact
form. The max_pages is needed to support a use case where user only wants
to get a specific number of pages. So there is no need to find all the
pages of interest in the range when max_pages is specified. The IOCTL
returns when the maximum number of the pages are found. The max_pages is
optional. If max_pages is specified, it must be equal or greater than the
vec_size. This restriction is needed to handle worse case when one
page_region only contains info of one page and it cannot be compacted.
This is needed to emulate the Windows getWriteWatch() syscall.
The patch series include the detailed selftest which can be used as an
example for the uffd async wp test and PAGEMAP_IOCTL. It shows the
interface usages as well.
[1] https://lore.kernel.org/lkml/54d4c322-cd6e-eefd-b161-2af2b56aae24@collabora…
[2] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.…
[3] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.…
[4] https://lore.kernel.org/all/Y6Hc2d+7eTKs7AiH@x1n
[5] https://lore.kernel.org/all/YyiDg79flhWoMDZB@gmail.com/
[6] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com/
Regards,
Muhammad Usama Anjum
Muhammad Usama Anjum (4):
fs/proc/task_mmu: Implement IOCTL to get and optionally clear info
about PTEs
tools headers UAPI: Update linux/fs.h with the kernel sources
mm/pagemap: add documentation of PAGEMAP_SCAN IOCTL
selftests: mm: add pagemap ioctl tests
Peter Xu (1):
userfaultfd: UFFD_FEATURE_WP_ASYNC
Documentation/admin-guide/mm/pagemap.rst | 56 +
Documentation/admin-guide/mm/userfaultfd.rst | 35 +
fs/proc/task_mmu.c | 481 +++++++
fs/userfaultfd.c | 26 +-
include/linux/userfaultfd_k.h | 21 +-
include/uapi/linux/fs.h | 53 +
include/uapi/linux/userfaultfd.h | 9 +-
mm/hugetlb.c | 32 +-
mm/memory.c | 27 +-
tools/include/uapi/linux/fs.h | 53 +
tools/testing/selftests/mm/.gitignore | 1 +
tools/testing/selftests/mm/Makefile | 3 +-
tools/testing/selftests/mm/config | 1 +
tools/testing/selftests/mm/pagemap_ioctl.c | 1326 ++++++++++++++++++
tools/testing/selftests/mm/run_vmtests.sh | 4 +
15 files changed, 2105 insertions(+), 23 deletions(-)
create mode 100644 tools/testing/selftests/mm/pagemap_ioctl.c
mode change 100644 => 100755 tools/testing/selftests/mm/run_vmtests.sh
--
2.39.2
From: Zhang Yunkai (CGEL ZTE) <zhang.yunkai(a)zte.com.cn>
The verification function of this test case is likely to encounter the
following error, which may confuse users. The problem is easily
reproducible in the latest kernel.
Environment A, the sender:
bash# udpgso_bench_tx -l 4 -4 -D "$IP_B"
udpgso_bench_tx: write: Connection refused
Environment B, the receiver:
bash# udpgso_bench_rx -4 -G -S 1472 -v
udpgso_bench_rx: data[1472]: len 17664, a(97) != q(113)
If the packet is captured, you will see:
Environment A, the sender:
bash# tcpdump -i eth0 host "$IP_B" &
IP $IP_A.41025 > $IP_B.8000: UDP, length 1472
IP $IP_A.41025 > $IP_B.8000: UDP, length 1472
IP $IP_B > $IP_A: ICMP $IP_B udp port 8000 unreachable, length 556
Environment B, the receiver:
bash# tcpdump -i eth0 host "$IP_B" &
IP $IP_A.41025 > $IP_B.8000: UDP, length 7360
IP $IP_A.41025 > $IP_B.8000: UDP, length 14720
IP $IP_B > $IP_A: ICMP $IP_B udp port 8000 unreachable, length 556
In one test, the verification data is printed as follows:
abcd...xyz | 1...
.. |
abcd...xyz |
abcd...opabcd...xyz | ...1472... Not xyzabcd, messages are merged
.. |
This is because the sending buffer is buf[64K], and its content is a
loop of A-Z. But maybe only 1472 bytes per send, or more if UDP GSO is
used. The message content does not necessarily end with XYZ, but GRO
will merge these packets, and the -v parameter directly verifies the
entire GRO receive buffer. So we do the validation after the data is split
at the receiving end, just as the application actually uses this feature.
If the sender does not use GSO, each individual segment starts at A,
end at somewhere. Using GSO also has the same problem, and. The data
between each segment during transmission is continuous, but GRO is merged
in the order received, which is not necessarily the order of transmission.
Execution in the same environment does not cause problems, because the
lo device is not NAPI, and does not perform GRO processing. Perhaps it
could be worth supporting to reduce system calls.
bash# tcpdump -i lo host "$IP_self" &
bash# echo udp_gro_receive > /sys/kernel/debug/tracing/set_ftrace_filter
bash# echo function > /sys/kernel/debug/tracing/current_tracer
bash# udpgso_bench_rx -4 -G -S 1472 -v &
bash# udpgso_bench_tx -l 4 -4 -D "$IP_self"
The issue still exists when using the GRO with -G, but not using the -S
to obtain gsosize. Therefore, a print has been added to remind users.
After this issue is resolved, another issue will be encountered and will
be resolved in the next patch.
Environment A, the sender:
bash# udpgso_bench_tx -l 4 -4 -D "$DST"
udpgso_bench_tx: write: Connection refused
Environment B, the receiver:
bash# udpgso_bench_rx -4 -G -S 1472
udp rx: 15 MB/s 256 calls/s
udp rx: 30 MB/s 512 calls/s
udpgso_bench_rx: recv: bad gso size, got -1, expected 1472
(-1 == no gso cmsg))
v2:
- Fix confusing descriptions
Signed-off-by: Zhang Yunkai (CGEL ZTE) <zhang.yunkai(a)zte.com.cn>
Reviewed-by: Xu Xin (CGEL ZTE) <xu.xin16(a)zte.com.cn>
Reviewed-by: Yang Yang (CGEL ZTE) <yang.yang29(a)zte.com.cn>
Cc: Xuexin Jiang (CGEL ZTE) <jiang.xuexin(a)zte.com.cn>
---
tools/testing/selftests/net/udpgso_bench_rx.c | 40 +++++++++++++++++++++------
1 file changed, 31 insertions(+), 9 deletions(-)
diff --git a/tools/testing/selftests/net/udpgso_bench_rx.c b/tools/testing/selftests/net/udpgso_bench_rx.c
index f35a924d4a30..6a2026494cdb 100644
--- a/tools/testing/selftests/net/udpgso_bench_rx.c
+++ b/tools/testing/selftests/net/udpgso_bench_rx.c
@@ -189,26 +189,44 @@ static char sanitized_char(char val)
return (val >= 'a' && val <= 'z') ? val : '.';
}
-static void do_verify_udp(const char *data, int len)
+static void do_verify_udp(const char *data, int start, int len)
{
- char cur = data[0];
+ char cur = data[start];
int i;
/* verify contents */
if (cur < 'a' || cur > 'z')
error(1, 0, "data initial byte out of range");
- for (i = 1; i < len; i++) {
+ for (i = start + 1; i < start + len; i++) {
if (cur == 'z')
cur = 'a';
else
cur++;
- if (data[i] != cur)
+ if (data[i] != cur) {
+ if (cfg_gro_segment && !cfg_expected_gso_size)
+ error(0, 0, "Use -S to obtain gsosize, to %s"
+ , "help guide split and verification.");
+
error(1, 0, "data[%d]: len %d, %c(%hhu) != %c(%hhu)\n",
i, len,
sanitized_char(data[i]), data[i],
sanitized_char(cur), cur);
+ }
+ }
+}
+
+static void do_verify_udp_gro(const char *data, int len, int gso_size)
+{
+ int start = 0;
+
+ while (len - start > 0) {
+ if (len - start > gso_size)
+ do_verify_udp(data, start, gso_size);
+ else
+ do_verify_udp(data, start, len - start);
+ start += gso_size;
}
}
@@ -264,16 +282,20 @@ static void do_flush_udp(int fd)
if (cfg_expected_pkt_len && ret != cfg_expected_pkt_len)
error(1, 0, "recv: bad packet len, got %d,"
" expected %d\n", ret, cfg_expected_pkt_len);
+ if (cfg_expected_gso_size && cfg_expected_gso_size != gso_size)
+ error(1, 0, "recv: bad gso size, got %d, expected %d %s",
+ gso_size, cfg_expected_gso_size, "(-1 == no gso cmsg))\n");
if (len && cfg_verify) {
if (ret == 0)
error(1, errno, "recv: 0 byte datagram\n");
- do_verify_udp(rbuf, ret);
+ if (!cfg_gro_segment)
+ do_verify_udp(rbuf, 0, ret);
+ else if (gso_size > 0)
+ do_verify_udp_gro(rbuf, ret, gso_size);
+ else
+ do_verify_udp_gro(rbuf, ret, ret);
}
- if (cfg_expected_gso_size && cfg_expected_gso_size != gso_size)
- error(1, 0, "recv: bad gso size, got %d, expected %d "
- "(-1 == no gso cmsg))\n", gso_size,
- cfg_expected_gso_size);
packets++;
bytes += ret;
--
2.15.2
*Changes in v14*
- Fix build error caused by #ifdef added at last minute in some configs
*Changes in v13*
- Rebase on top of next-20230414
- Give-up on using uffd_wp_range() and write new helpers, flush tlb only
once
*Changes in v12*
- Update and other memory types to UFFD_FEATURE_WP_ASYNC
- Rebaase on top of next-20230406
- Review updates
*Changes in v11*
- Rebase on top of next-20230307
- Base patches on UFFD_FEATURE_WP_UNPOPULATED
- Do a lot of cosmetic changes and review updates
- Remove ENGAGE_WP + !GET operation as it can be performed with
UFFDIO_WRITEPROTECT
*Changes in v10*
- Add specific condition to return error if hugetlb is used with wp
async
- Move changes in tools/include/uapi/linux/fs.h to separate patch
- Add documentation
*Changes in v9:*
- Correct fault resolution for userfaultfd wp async
- Fix build warnings and errors which were happening on some configs
- Simplify pagemap ioctl's code
*Changes in v8:*
- Update uffd async wp implementation
- Improve PAGEMAP_IOCTL implementation
*Changes in v7:*
- Add uffd wp async
- Update the IOCTL to use uffd under the hood instead of soft-dirty
flags
*Motivation*
The real motivation for adding PAGEMAP_SCAN IOCTL is to emulate Windows
GetWriteWatch() syscall [1]. The GetWriteWatch{} retrieves the addresses of
the pages that are written to in a region of virtual memory.
This syscall is used in Windows applications and games etc. This syscall is
being emulated in pretty slow manner in userspace. Our purpose is to
enhance the kernel such that we translate it efficiently in a better way.
Currently some out of tree hack patches are being used to efficiently
emulate it in some kernels. We intend to replace those with these patches.
So the whole gaming on Linux can effectively get benefit from this. It
means there would be tons of users of this code.
CRIU use case [2] was mentioned by Andrei and Danylo:
> Use cases for migrating sparse VMAs are binaries sanitized with ASAN,
> MSAN or TSAN [3]. All of these sanitizers produce sparse mappings of
> shadow memory [4]. Being able to migrate such binaries allows to highly
> reduce the amount of work needed to identify and fix post-migration
> crashes, which happen constantly.
Andrei's defines the following uses of this code:
* it is more granular and allows us to track changed pages more
effectively. The current interface can clear dirty bits for the entire
process only. In addition, reading info about pages is a separate
operation. It means we must freeze the process to read information
about all its pages, reset dirty bits, only then we can start dumping
pages. The information about pages becomes more and more outdated,
while we are processing pages. The new interface solves both these
downsides. First, it allows us to read pte bits and clear the
soft-dirty bit atomically. It means that CRIU will not need to freeze
processes to pre-dump their memory. Second, it clears soft-dirty bits
for a specified region of memory. It means CRIU will have actual info
about pages to the moment of dumping them.
* The new interface has to be much faster because basic page filtering
is happening in the kernel. With the old interface, we have to read
pagemap for each page.
*Implementation Evolution (Short Summary)*
From the definition of GetWriteWatch(), we feel like kernel's soft-dirty
feature can be used under the hood with some additions like:
* reset soft-dirty flag for only a specific region of memory instead of
clearing the flag for the entire process
* get and clear soft-dirty flag for a specific region atomically
So we decided to use ioctl on pagemap file to read or/and reset soft-dirty
flag. But using soft-dirty flag, sometimes we get extra pages which weren't
even written. They had become soft-dirty because of VMA merging and
VM_SOFTDIRTY flag. This breaks the definition of GetWriteWatch(). We were
able to by-pass this short coming by ignoring VM_SOFTDIRTY until David
reported that mprotect etc messes up the soft-dirty flag while ignoring
VM_SOFTDIRTY [5]. This wasn't happening until [6] got introduced. We
discussed if we can revert these patches. But we could not reach to any
conclusion. So at this point, I made couple of tries to solve this whole
VM_SOFTDIRTY issue by correcting the soft-dirty implementation:
* [7] Correct the bug fixed wrongly back in 2014. It had potential to cause
regression. We left it behind.
* [8] Keep a list of soft-dirty part of a VMA across splits and merges. I
got the reply don't increase the size of the VMA by 8 bytes.
At this point, we left soft-dirty considering it is too much delicate and
userfaultfd [9] seemed like the only way forward. From there onward, we
have been basing soft-dirty emulation on userfaultfd wp feature where
kernel resolves the faults itself when WP_ASYNC feature is used. It was
straight forward to add WP_ASYNC feature in userfautlfd. Now we get only
those pages dirty or written-to which are really written in reality. (PS
There is another WP_UNPOPULATED userfautfd feature is required which is
needed to avoid pre-faulting memory before write-protecting [9].)
All the different masks were added on the request of CRIU devs to create
interface more generic and better.
[1] https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-…
[2] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com
[3] https://github.com/google/sanitizers
[4] https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm#64-bit
[5] https://lore.kernel.org/all/bfcae708-db21-04b4-0bbe-712badd03071@redhat.com
[6] https://lore.kernel.org/all/20220725142048.30450-1-peterx@redhat.com/
[7] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.…
[8] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.…
[9] https://lore.kernel.org/all/20230306213925.617814-1-peterx@redhat.com
[10] https://lore.kernel.org/all/20230125144529.1630917-1-mdanylo@google.com
* Original Cover letter from v8*
Hello,
Note:
Soft-dirty pages and pages which have been written-to are synonyms. As
kernel already has soft-dirty feature inside which we have given up to
use, we are using written-to terminology while using UFFD async WP under
the hood.
This IOCTL, PAGEMAP_SCAN on pagemap file can be used to get and/or clear
the info about page table entries. The following operations are
supported in this ioctl:
- Get the information if the pages have been written-to (PAGE_IS_WRITTEN),
file mapped (PAGE_IS_FILE), present (PAGE_IS_PRESENT) or swapped
(PAGE_IS_SWAPPED).
- Write-protect the pages (PAGEMAP_WP_ENGAGE) to start finding which
pages have been written-to.
- Find pages which have been written-to and write protect the pages
(atomic PAGE_IS_WRITTEN + PAGEMAP_WP_ENGAGE)
It is possible to find and clear soft-dirty pages entirely in userspace.
But it isn't efficient:
- The mprotect and SIGSEGV handler for bookkeeping
- The userfaultfd wp (synchronous) with the handler for bookkeeping
Some benchmarks can be seen here[1]. This series adds features that weren't
present earlier:
- There is no atomic get soft-dirty/Written-to status and clear present in
the kernel.
- The pages which have been written-to can not be found in accurate way.
(Kernel's soft-dirty PTE bit + sof_dirty VMA bit shows more soft-dirty
pages than there actually are.)
Historically, soft-dirty PTE bit tracking has been used in the CRIU
project. The procfs interface is enough for finding the soft-dirty bit
status and clearing the soft-dirty bit of all the pages of a process.
We have the use case where we need to track the soft-dirty PTE bit for
only specific pages on-demand. We need this tracking and clear mechanism
of a region of memory while the process is running to emulate the
getWriteWatch() syscall of Windows.
*(Moved to using UFFD instead of soft-dirtyi feature to find pages which
have been written-to from v7 patch series)*:
Stop using the soft-dirty flags for finding which pages have been
written to. It is too delicate and wrong as it shows more soft-dirty
pages than the actual soft-dirty pages. There is no interest in
correcting it [2][3] as this is how the feature was written years ago.
It shouldn't be updated to changed behaviour. Peter Xu has suggested
using the async version of the UFFD WP [4] as it is based inherently
on the PTEs.
So in this patch series, I've added a new mode to the UFFD which is
asynchronous version of the write protect. When this variant of the
UFFD WP is used, the page faults are resolved automatically by the
kernel. The pages which have been written-to can be found by reading
pagemap file (!PM_UFFD_WP). This feature can be used successfully to
find which pages have been written to from the time the pages were
write protected. This works just like the soft-dirty flag without
showing any extra pages which aren't soft-dirty in reality.
The information related to pages if the page is file mapped, present and
swapped is required for the CRIU project [5][6]. The addition of the
required mask, any mask, excluded mask and return masks are also required
for the CRIU project [5].
The IOCTL returns the addresses of the pages which match the specific
masks. The page addresses are returned in struct page_region in a compact
form. The max_pages is needed to support a use case where user only wants
to get a specific number of pages. So there is no need to find all the
pages of interest in the range when max_pages is specified. The IOCTL
returns when the maximum number of the pages are found. The max_pages is
optional. If max_pages is specified, it must be equal or greater than the
vec_size. This restriction is needed to handle worse case when one
page_region only contains info of one page and it cannot be compacted.
This is needed to emulate the Windows getWriteWatch() syscall.
The patch series include the detailed selftest which can be used as an
example for the uffd async wp test and PAGEMAP_IOCTL. It shows the
interface usages as well.
[1] https://lore.kernel.org/lkml/54d4c322-cd6e-eefd-b161-2af2b56aae24@collabora…
[2] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.…
[3] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.…
[4] https://lore.kernel.org/all/Y6Hc2d+7eTKs7AiH@x1n
[5] https://lore.kernel.org/all/YyiDg79flhWoMDZB@gmail.com/
[6] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com/
Regards,
Muhammad Usama Anjum
Muhammad Usama Anjum (4):
fs/proc/task_mmu: Implement IOCTL to get and optionally clear info
about PTEs
tools headers UAPI: Update linux/fs.h with the kernel sources
mm/pagemap: add documentation of PAGEMAP_SCAN IOCTL
selftests: mm: add pagemap ioctl tests
Peter Xu (1):
userfaultfd: UFFD_FEATURE_WP_ASYNC
Documentation/admin-guide/mm/pagemap.rst | 56 +
Documentation/admin-guide/mm/userfaultfd.rst | 35 +
fs/proc/task_mmu.c | 478 +++++++
fs/userfaultfd.c | 26 +-
include/linux/userfaultfd_k.h | 21 +-
include/uapi/linux/fs.h | 53 +
include/uapi/linux/userfaultfd.h | 9 +-
mm/hugetlb.c | 32 +-
mm/memory.c | 27 +-
tools/include/uapi/linux/fs.h | 53 +
tools/testing/selftests/mm/.gitignore | 1 +
tools/testing/selftests/mm/Makefile | 3 +-
tools/testing/selftests/mm/config | 1 +
tools/testing/selftests/mm/pagemap_ioctl.c | 1326 ++++++++++++++++++
tools/testing/selftests/mm/run_vmtests.sh | 4 +
15 files changed, 2102 insertions(+), 23 deletions(-)
create mode 100644 tools/testing/selftests/mm/pagemap_ioctl.c
mode change 100644 => 100755 tools/testing/selftests/mm/run_vmtests.sh
--
2.39.2
From: zhang yunkai (CGEL ZTE) <zhang.yunkai(a)zte.com.cn>
1.Fix verifty exception
Executing the following command fails:
bash# udpgso_bench_tx -l 4 -4 -D "$DST"
bash# udpgso_bench_tx -l 4 -4 -D "$DST" -S 0
bash# udpgso_bench_rx -4 -G -S 1472 -v
udpgso_bench_rx: data[1472]: len 2944, a(97) != q(113)
This is because the sending buffers are not aligned by 26 bytes, and the
GRO is not merged sequentially, and the receiver does not judge this
situation. We think of the receiver to split the data and then validate
it, just as the application actually uses this feature.
2.Fix gsosize exception
Executing the following command fails:
bash# udpgso_bench_tx -l 4 -4 -D "$DST"
bash# udpgso_bench_tx -l 4 -4 -D "$DST" -S 0
bash# udpgso_bench_rx -4 -G -S 1472
udp rx: 15 MB/s 256 calls/s
udp rx: 30 MB/s 512 calls/s
udpgso_bench_rx: recv: bad gso size, got -1, expected 1472
(-1 == no gso cmsg))
IP 192.168.2.199.55238 > 192.168.2.203.8000: UDP, length 7360
IP 192.168.2.199.55238 > 192.168.2.203.8000: UDP, length 1472
IP 192.168.2.199.55238 > 192.168.2.203.8000: UDP, length 1472
IP 192.168.2.199.55238 > 192.168.2.203.8000: UDP, length 4416
IP 192.168.2.199.55238 > 192.168.2.203.8000: UDP, length 11776
IP 192.168.2.199.55238 > 192.168.2.203.8000: UDP, length 20608
recv: got one message len:1472, probably not an error.
recv: got one message len:1472, probably not an error.
This is due to network, NAPI, timer, etc., only one message being received.
We believe that this situation should be normal.
3.Fix packet number exception
bash# udpgso_bench_rx -4 -n 100
bash# udpgso_bench_tx -l 1 -4 -D "$DST"
udpgso_bench_rx: wrong packet number! got 0, expected 100
This is because the packets is cleared after print.
Zhang Yunkai (3):
selftests: net: udpgso_bench_rx: Fix verifty exceptions
selftests: net: udpgso_bench_rx: Fix gsosize exceptions
selftests: net: udpgso_bench_rx: Fix packet number exceptions
tools/testing/selftests/net/udpgso_bench_rx.c | 45 +++++++++++++++++++++------
1 file changed, 35 insertions(+), 10 deletions(-)
--
2.15.2
KUnit tests run in a kthread, with the current->kunit_test pointer set
to the test's context. This allows the kunit_get_current_test() and
kunit_fail_current_test() macros to work. Normally, this pointer is
still valid during test shutdown (i.e., the suite->exit function, and
any resource cleanup). However, if the test has exited early (e.g., due
to a failed assertion), the cleanup is done in the parent KUnit thread,
which does not have an active context.
Fix this by setting the active KUnit context for the duration of the
test shutdown procedure. When the test exits normally, this does
nothing. When run from the KUits previous value (probably NULL)
afterwards.
This should make it easier to get access to the KUnit context,
particularly from within resource cleanup functions, which may, for
example, need access to data in test->priv.
Signed-off-by: David Gow <davidgow(a)google.com>
---
This becomes useful with the current kunit_add_action() implementation,
as actions do not get the KUnit context passed in by default:
https://lore.kernel.org/linux-kselftest/CABVgOSmjs0wLUa4=ErkB9tH8p6A1P6N33b…
I think it's probably correct anyway, though, so we should either do
this, or totally rule out using kunit_get_current_test() here at all, by
resetting current->kunit_test to NULL before running cleanup even in
the normal case.
I've only given this the most cursory testing so far (I'm not sure how
much of the executor innards I want to expose to be able to actually
write a proper test for it), so more eyes and/or suggestions are
welcome.
Cheers,
-- David
---
lib/kunit/test.c | 11 +++++++++++
1 file changed, 11 insertions(+)
diff --git a/lib/kunit/test.c b/lib/kunit/test.c
index e2910b261112..2d7cad249863 100644
--- a/lib/kunit/test.c
+++ b/lib/kunit/test.c
@@ -392,10 +392,21 @@ static void kunit_case_internal_cleanup(struct kunit *test)
static void kunit_run_case_cleanup(struct kunit *test,
struct kunit_suite *suite)
{
+ /*
+ * If we're no-longer running from within the test kthread() because it failed
+ * or timed out, we still need the context to be okay when running exit and
+ * cleanup functions.
+ */
+ struct kunit *old_current = current->kunit_test;
+
+ current->kunit_test = test;
if (suite->exit)
suite->exit(test);
kunit_case_internal_cleanup(test);
+
+ /* Restore the thread's previous test context (probably NULL or test). */
+ current->kunit_test = old_current;
}
struct kunit_try_catch_context {
--
2.40.0.634.g4ca3ef3211-goog
From: Feng Zhou <zhoufeng.zf(a)bytedance.com>
Add support for integer type of accessing variable length array.
Add a selftest to check it.
Feng Zhou (2):
bpf: support access variable length array of integer type
selftests/bpf: Add test to access integer type of variable array
kernel/bpf/btf.c | 8 +++++---
.../selftests/bpf/bpf_testmod/bpf_testmod.c | 20 +++++++++++++++++++
.../selftests/bpf/prog_tests/tracing_struct.c | 2 ++
.../selftests/bpf/progs/tracing_struct.c | 13 ++++++++++++
4 files changed, 40 insertions(+), 3 deletions(-)
--
2.20.1
*Changes in v13*
- Rebase on top of next-20230414
- Give-up on using uffd_wp_range() and write new helpers, flush tlb only
once
*Changes in v12*
- Update and other memory types to UFFD_FEATURE_WP_ASYNC
- Rebaase on top of next-20230406
- Review updates
*Changes in v11*
- Rebase on top of next-20230307
- Base patches on UFFD_FEATURE_WP_UNPOPULATED
- Do a lot of cosmetic changes and review updates
- Remove ENGAGE_WP + !GET operation as it can be performed with
UFFDIO_WRITEPROTECT
*Changes in v10*
- Add specific condition to return error if hugetlb is used with wp
async
- Move changes in tools/include/uapi/linux/fs.h to separate patch
- Add documentation
*Changes in v9:*
- Correct fault resolution for userfaultfd wp async
- Fix build warnings and errors which were happening on some configs
- Simplify pagemap ioctl's code
*Changes in v8:*
- Update uffd async wp implementation
- Improve PAGEMAP_IOCTL implementation
*Changes in v7:*
- Add uffd wp async
- Update the IOCTL to use uffd under the hood instead of soft-dirty
flags
*Motivation*
The real motivation for adding PAGEMAP_SCAN IOCTL is to emulate Windows
GetWriteWatch() syscall [1]. The GetWriteWatch{} retrieves the addresses of
the pages that are written to in a region of virtual memory.
This syscall is used in Windows applications and games etc. This syscall is
being emulated in pretty slow manner in userspace. Our purpose is to
enhance the kernel such that we translate it efficiently in a better way.
Currently some out of tree hack patches are being used to efficiently
emulate it in some kernels. We intend to replace those with these patches.
So the whole gaming on Linux can effectively get benefit from this. It
means there would be tons of users of this code.
CRIU use case [2] was mentioned by Andrei and Danylo:
> Use cases for migrating sparse VMAs are binaries sanitized with ASAN,
> MSAN or TSAN [3]. All of these sanitizers produce sparse mappings of
> shadow memory [4]. Being able to migrate such binaries allows to highly
> reduce the amount of work needed to identify and fix post-migration
> crashes, which happen constantly.
Andrei's defines the following uses of this code:
* it is more granular and allows us to track changed pages more
effectively. The current interface can clear dirty bits for the entire
process only. In addition, reading info about pages is a separate
operation. It means we must freeze the process to read information
about all its pages, reset dirty bits, only then we can start dumping
pages. The information about pages becomes more and more outdated,
while we are processing pages. The new interface solves both these
downsides. First, it allows us to read pte bits and clear the
soft-dirty bit atomically. It means that CRIU will not need to freeze
processes to pre-dump their memory. Second, it clears soft-dirty bits
for a specified region of memory. It means CRIU will have actual info
about pages to the moment of dumping them.
* The new interface has to be much faster because basic page filtering
is happening in the kernel. With the old interface, we have to read
pagemap for each page.
*Implementation Evolution (Short Summary)*
From the definition of GetWriteWatch(), we feel like kernel's soft-dirty
feature can be used under the hood with some additions like:
* reset soft-dirty flag for only a specific region of memory instead of
clearing the flag for the entire process
* get and clear soft-dirty flag for a specific region atomically
So we decided to use ioctl on pagemap file to read or/and reset soft-dirty
flag. But using soft-dirty flag, sometimes we get extra pages which weren't
even written. They had become soft-dirty because of VMA merging and
VM_SOFTDIRTY flag. This breaks the definition of GetWriteWatch(). We were
able to by-pass this short coming by ignoring VM_SOFTDIRTY until David
reported that mprotect etc messes up the soft-dirty flag while ignoring
VM_SOFTDIRTY [5]. This wasn't happening until [6] got introduced. We
discussed if we can revert these patches. But we could not reach to any
conclusion. So at this point, I made couple of tries to solve this whole
VM_SOFTDIRTY issue by correcting the soft-dirty implementation:
* [7] Correct the bug fixed wrongly back in 2014. It had potential to cause
regression. We left it behind.
* [8] Keep a list of soft-dirty part of a VMA across splits and merges. I
got the reply don't increase the size of the VMA by 8 bytes.
At this point, we left soft-dirty considering it is too much delicate and
userfaultfd [9] seemed like the only way forward. From there onward, we
have been basing soft-dirty emulation on userfaultfd wp feature where
kernel resolves the faults itself when WP_ASYNC feature is used. It was
straight forward to add WP_ASYNC feature in userfautlfd. Now we get only
those pages dirty or written-to which are really written in reality. (PS
There is another WP_UNPOPULATED userfautfd feature is required which is
needed to avoid pre-faulting memory before write-protecting [9].)
All the different masks were added on the request of CRIU devs to create
interface more generic and better.
[1] https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-…
[2] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com
[3] https://github.com/google/sanitizers
[4] https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm#64-bit
[5] https://lore.kernel.org/all/bfcae708-db21-04b4-0bbe-712badd03071@redhat.com
[6] https://lore.kernel.org/all/20220725142048.30450-1-peterx@redhat.com/
[7] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.…
[8] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.…
[9] https://lore.kernel.org/all/20230306213925.617814-1-peterx@redhat.com
[10] https://lore.kernel.org/all/20230125144529.1630917-1-mdanylo@google.com
* Original Cover letter from v8*
Hello,
Note:
Soft-dirty pages and pages which have been written-to are synonyms. As
kernel already has soft-dirty feature inside which we have given up to
use, we are using written-to terminology while using UFFD async WP under
the hood.
This IOCTL, PAGEMAP_SCAN on pagemap file can be used to get and/or clear
the info about page table entries. The following operations are
supported in this ioctl:
- Get the information if the pages have been written-to (PAGE_IS_WRITTEN),
file mapped (PAGE_IS_FILE), present (PAGE_IS_PRESENT) or swapped
(PAGE_IS_SWAPPED).
- Write-protect the pages (PAGEMAP_WP_ENGAGE) to start finding which
pages have been written-to.
- Find pages which have been written-to and write protect the pages
(atomic PAGE_IS_WRITTEN + PAGEMAP_WP_ENGAGE)
It is possible to find and clear soft-dirty pages entirely in userspace.
But it isn't efficient:
- The mprotect and SIGSEGV handler for bookkeeping
- The userfaultfd wp (synchronous) with the handler for bookkeeping
Some benchmarks can be seen here[1]. This series adds features that weren't
present earlier:
- There is no atomic get soft-dirty/Written-to status and clear present in
the kernel.
- The pages which have been written-to can not be found in accurate way.
(Kernel's soft-dirty PTE bit + sof_dirty VMA bit shows more soft-dirty
pages than there actually are.)
Historically, soft-dirty PTE bit tracking has been used in the CRIU
project. The procfs interface is enough for finding the soft-dirty bit
status and clearing the soft-dirty bit of all the pages of a process.
We have the use case where we need to track the soft-dirty PTE bit for
only specific pages on-demand. We need this tracking and clear mechanism
of a region of memory while the process is running to emulate the
getWriteWatch() syscall of Windows.
*(Moved to using UFFD instead of soft-dirtyi feature to find pages which
have been written-to from v7 patch series)*:
Stop using the soft-dirty flags for finding which pages have been
written to. It is too delicate and wrong as it shows more soft-dirty
pages than the actual soft-dirty pages. There is no interest in
correcting it [2][3] as this is how the feature was written years ago.
It shouldn't be updated to changed behaviour. Peter Xu has suggested
using the async version of the UFFD WP [4] as it is based inherently
on the PTEs.
So in this patch series, I've added a new mode to the UFFD which is
asynchronous version of the write protect. When this variant of the
UFFD WP is used, the page faults are resolved automatically by the
kernel. The pages which have been written-to can be found by reading
pagemap file (!PM_UFFD_WP). This feature can be used successfully to
find which pages have been written to from the time the pages were
write protected. This works just like the soft-dirty flag without
showing any extra pages which aren't soft-dirty in reality.
The information related to pages if the page is file mapped, present and
swapped is required for the CRIU project [5][6]. The addition of the
required mask, any mask, excluded mask and return masks are also required
for the CRIU project [5].
The IOCTL returns the addresses of the pages which match the specific
masks. The page addresses are returned in struct page_region in a compact
form. The max_pages is needed to support a use case where user only wants
to get a specific number of pages. So there is no need to find all the
pages of interest in the range when max_pages is specified. The IOCTL
returns when the maximum number of the pages are found. The max_pages is
optional. If max_pages is specified, it must be equal or greater than the
vec_size. This restriction is needed to handle worse case when one
page_region only contains info of one page and it cannot be compacted.
This is needed to emulate the Windows getWriteWatch() syscall.
The patch series include the detailed selftest which can be used as an
example for the uffd async wp test and PAGEMAP_IOCTL. It shows the
interface usages as well.
[1] https://lore.kernel.org/lkml/54d4c322-cd6e-eefd-b161-2af2b56aae24@collabora…
[2] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.…
[3] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.…
[4] https://lore.kernel.org/all/Y6Hc2d+7eTKs7AiH@x1n
[5] https://lore.kernel.org/all/YyiDg79flhWoMDZB@gmail.com/
[6] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com/
Regards,
Muhammad Usama Anjum
Muhammad Usama Anjum (4):
fs/proc/task_mmu: Implement IOCTL to get and optionally clear info
about PTEs
tools headers UAPI: Update linux/fs.h with the kernel sources
mm/pagemap: add documentation of PAGEMAP_SCAN IOCTL
selftests: mm: add pagemap ioctl tests
Peter Xu (1):
userfaultfd: UFFD_FEATURE_WP_ASYNC
Documentation/admin-guide/mm/pagemap.rst | 56 +
Documentation/admin-guide/mm/userfaultfd.rst | 35 +
fs/proc/task_mmu.c | 478 +++++++
fs/userfaultfd.c | 26 +-
include/linux/userfaultfd_k.h | 21 +-
include/uapi/linux/fs.h | 53 +
include/uapi/linux/userfaultfd.h | 9 +-
mm/hugetlb.c | 32 +-
mm/memory.c | 27 +-
tools/include/uapi/linux/fs.h | 53 +
tools/testing/selftests/mm/.gitignore | 1 +
tools/testing/selftests/mm/Makefile | 3 +-
tools/testing/selftests/mm/config | 1 +
tools/testing/selftests/mm/pagemap_ioctl.c | 1326 ++++++++++++++++++
tools/testing/selftests/mm/run_vmtests.sh | 4 +
15 files changed, 2102 insertions(+), 23 deletions(-)
create mode 100644 tools/testing/selftests/mm/pagemap_ioctl.c
mode change 100644 => 100755 tools/testing/selftests/mm/run_vmtests.sh
--
2.39.2