From: Geliang Tang <tanggeliang(a)kylinos.cn>
Address Martin's comments for v1 (thanks.)
- drop patch 1, "export send_byte helper".
- drop "WRITE_ONCE(arg.stop, 0)".
- rebased.
send_recv_data will be re-used in MPTCP bpf tests, but not included
in this set because it depends on other patches that have not been
in the bpf-next yet. It will be sent as another set soon.
Geliang Tang (2):
selftests/bpf: Add struct send_recv_arg
selftests/bpf: Export send_recv_data helper
tools/testing/selftests/bpf/network_helpers.c | 85 +++++++++++++++++++
tools/testing/selftests/bpf/network_helpers.h | 1 +
.../selftests/bpf/prog_tests/bpf_tcp_ca.c | 71 +---------------
3 files changed, 87 insertions(+), 70 deletions(-)
--
2.40.1
From: Jason Xing <kernelxing(a)tencent.com>
The output goes like this if I make samples/bpf:
...warning: no previous prototype for ‘get_cgroup_id_from_path’...
Make this function static could solve the warning problem since
no one outside of the file calls it.
Signed-off-by: Jason Xing <kernelxing(a)tencent.com>
---
tools/testing/selftests/bpf/cgroup_helpers.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/tools/testing/selftests/bpf/cgroup_helpers.c b/tools/testing/selftests/bpf/cgroup_helpers.c
index 19be9c63d5e8..f2952a65dcc2 100644
--- a/tools/testing/selftests/bpf/cgroup_helpers.c
+++ b/tools/testing/selftests/bpf/cgroup_helpers.c
@@ -429,7 +429,7 @@ int create_and_get_cgroup(const char *relative_path)
* which is an invalid cgroup id.
* If there is a failure, it prints the error to stderr.
*/
-unsigned long long get_cgroup_id_from_path(const char *cgroup_workdir)
+static unsigned long long get_cgroup_id_from_path(const char *cgroup_workdir)
{
int dirfd, err, flags, mount_id, fhsize;
union {
--
2.37.3
v2:
- Found that rebuild_sched_domains() has external callers, revert its
change and introduce rebuild_sched_domains_cpuslocked() instead.
As discussed in the LKML thread [1], the asynchronous nature of cpuset
hotplug handling code is causing problem with RCU testing. With recent
changes in the way locking is being handled in the cpuset code, it is
now possible to make the cpuset hotplug code synchronous again without
major changes.
This series enables the hotplug code to call directly into cpuset hotplug
core without indirection with the exception of the special case of v1
cpuset becoming empty still being handled indirectly with workqueue.
A new simple test case was also written to test this special v1 cpuset
case. The test_cpuset_prs.sh script was also run with LOCKDEP on to
verify that there is no regression.
[1] https://lore.kernel.org/lkml/ZgYikMb5kZ7rxPp6@slm.duckdns.org/
Waiman Long (2):
cgroup/cpuset: Make cpuset hotplug processing synchronous
cgroup/cpuset: Add test_cpuset_v1_hp.sh
include/linux/cpuset.h | 3 -
kernel/cgroup/cpuset.c | 141 +++++++-----------
kernel/cpu.c | 48 ------
kernel/power/process.c | 2 -
tools/testing/selftests/cgroup/Makefile | 2 +-
.../selftests/cgroup/test_cpuset_v1_hp.sh | 46 ++++++
6 files changed, 103 insertions(+), 139 deletions(-)
create mode 100755 tools/testing/selftests/cgroup/test_cpuset_v1_hp.sh
--
2.39.3
RFC v6:
=======
Major Changes:
--------------
This revision largely rebases on top of net-next and addresses the little
feedback RFCv5 received.
The series remains in RFC because the queue-API ndos defined in this
series are not yet implemented. I have a GVE implementation I carry out
of tree for my testing. A upstreamable GVE implementation is in the
works. Aside from that, in my estimation all the patches are ready for
review/merge. Please do take a look.
As usual the full devmem TCP changes including the full GVE driver
implementation is here:
https://github.com/mina/linux/commits/tcpdevmem-v6/
This version also comes with some performance data recorded in the cover
letter (see below changelog).
Detailed changelog:
- Rebased on top of the merged netmem_ref changes.
- Converted skb->dmabuf to skb->readable (Pavel). Pavel's original
suggestion was to remove the skb->dmabuf flag entirely, but when I
looked into it closely, I found the issue that if we remove the flag
we have to dereference the shinfo(skb) pointer to obtain the first
frag to tell whether an skb is readable or not. This can cause a
performance regression if it dirties the cache line when the
shinfo(skb) was not really needed. Instead, I converted the skb->dmabuf
flag into a generic skb->readable flag which can be re-used by io_uring
0-copy RX.
- Squashed a few locking optimizations from Eric Dumazet in the RX path
and the DEVMEM_DONTNEED setsockopt.
- Expanded the tests a bit. Added validation for invalid scenarios and
added some more coverage.
Perf - page-pool benchmark:
---------------------------
bench_page_pool_simple.ko tests with and without these changes:
https://pastebin.com/raw/ncHDwAbn
AFAIK the number that really matters in the perf tests is the
'tasklet_page_pool01_fast_path Per elem'. This one measures at about 8
cycles without the changes but there is some 1 cycle noise in some
results.
With the patches this regresses to 9 cycles with the changes but there
is 1 cycle noise occasionally running this test repeatedly.
Lastly I tried disable the static_branch_unlikely() in
netmem_is_net_iov() check. To my surprise disabling the
static_branch_unlikely() check reduces the fast path back to 8 cycles,
but the 1 cycle noise remains.
Perf - Devmem TCP benchmark:
---------------------
189/200gbps bi-directional throughput with RX devmem TCP and regular TCP
TX i.e. ~95% line rate.
Major changes in RFC v5:
========================
1. Rebased on top of 'Abstract page from net stack' series and used the
new netmem type to refer to LSB set pointers instead of re-using
struct page.
2. Downgraded this series back to RFC and called it RFC v5. This is
because this series is now dependent on 'Abstract page from net
stack'[1] and the queue API. Both are removed from the series to
reduce the patch # and those bits are fairly independent or
pre-requisite work.
3. Reworked the page_pool devmem support to use netmem and for some
more unified handling.
4. Reworked the reference counting of net_iov (renamed from
page_pool_iov) to use pp_ref_count for refcounting.
The full changes including the dependent series and GVE page pool
support is here:
https://github.com/mina/linux/commits/tcpdevmem-rfcv5/
[1] https://patchwork.kernel.org/project/netdevbpf/list/?series=810774
Major changes in v1:
====================
1. Implemented MVP queue API ndos to remove the userspace-visible
driver reset.
2. Fixed issues in the napi_pp_put_page() devmem frag unref path.
3. Removed RFC tag.
Many smaller addressed comments across all the patches (patches have
individual change log).
Full tree including the rest of the GVE driver changes:
https://github.com/mina/linux/commits/tcpdevmem-v1
Changes in RFC v3:
==================
1. Pulled in the memory-provider dependency from Jakub's RFC[1] to make the
series reviewable and mergeable.
2. Implemented multi-rx-queue binding which was a todo in v2.
3. Fix to cmsg handling.
The sticking point in RFC v2[2] was the device reset required to refill
the device rx-queues after the dmabuf bind/unbind. The solution
suggested as I understand is a subset of the per-queue management ops
Jakub suggested or similar:
https://lore.kernel.org/netdev/20230815171638.4c057dcd@kernel.org/
This is not addressed in this revision, because:
1. This point was discussed at netconf & netdev and there is openness to
using the current approach of requiring a device reset.
2. Implementing individual queue resetting seems to be difficult for my
test bed with GVE. My prototype to test this ran into issues with the
rx-queues not coming back up properly if reset individually. At the
moment I'm unsure if it's a mistake in the POC or a genuine issue in
the virtualization stack behind GVE, which currently doesn't test
individual rx-queue restart.
3. Our usecases are not bothered by requiring a device reset to refill
the buffer queues, and we'd like to support NICs that run into this
limitation with resetting individual queues.
My thought is that drivers that have trouble with per-queue configs can
use the support in this series, while drivers that support new netdev
ops to reset individual queues can automatically reset the queue as
part of the dma-buf bind/unbind.
The same approach with device resets is presented again for consideration
with other sticking points addressed.
This proposal includes the rx devmem path only proposed for merge. For a
snapshot of my entire tree which includes the GVE POC page pool support &
device memory support:
https://github.com/torvalds/linux/compare/master...mina:linux:tcpdevmem-v3
[1] https://lore.kernel.org/netdev/f8270765-a27b-6ccf-33ea-cda097168d79@redhat.…
[2] https://lore.kernel.org/netdev/CAHS8izOVJGJH5WF68OsRWFKJid1_huzzUK+hpKbLcL4…
Changes in RFC v2:
==================
The sticking point in RFC v1[1] was the dma-buf pages approach we used to
deliver the device memory to the TCP stack. RFC v2 is a proof-of-concept
that attempts to resolve this by implementing scatterlist support in the
networking stack, such that we can import the dma-buf scatterlist
directly. This is the approach proposed at a high level here[2].
Detailed changes:
1. Replaced dma-buf pages approach with importing scatterlist into the
page pool.
2. Replace the dma-buf pages centric API with a netlink API.
3. Removed the TX path implementation - there is no issue with
implementing the TX path with scatterlist approach, but leaving
out the TX path makes it easier to review.
4. Functionality is tested with this proposal, but I have not conducted
perf testing yet. I'm not sure there are regressions, but I removed
perf claims from the cover letter until they can be re-confirmed.
5. Added Signed-off-by: contributors to the implementation.
6. Fixed some bugs with the RX path since RFC v1.
Any feedback welcome, but specifically the biggest pending questions
needing feedback IMO are:
1. Feedback on the scatterlist-based approach in general.
2. Netlink API (Patch 1 & 2).
3. Approach to handle all the drivers that expect to receive pages from
the page pool (Patch 6).
[1] https://lore.kernel.org/netdev/dfe4bae7-13a0-3c5d-d671-f61b375cb0b4@gmail.c…
[2] https://lore.kernel.org/netdev/CAHS8izPm6XRS54LdCDZVd0C75tA1zHSu6jLVO8nzTLX…
==================
* TL;DR:
Device memory TCP (devmem TCP) is a proposal for transferring data to and/or
from device memory efficiently, without bouncing the data to a host memory
buffer.
* Problem:
A large amount of data transfers have device memory as the source and/or
destination. Accelerators drastically increased the volume of such transfers.
Some examples include:
- ML accelerators transferring large amounts of training data from storage into
GPU/TPU memory. In some cases ML training setup time can be as long as 50% of
TPU compute time, improving data transfer throughput & efficiency can help
improving GPU/TPU utilization.
- Distributed training, where ML accelerators, such as GPUs on different hosts,
exchange data among them.
- Distributed raw block storage applications transfer large amounts of data with
remote SSDs, much of this data does not require host processing.
Today, the majority of the Device-to-Device data transfers the network are
implemented as the following low level operations: Device-to-Host copy,
Host-to-Host network transfer, and Host-to-Device copy.
The implementation is suboptimal, especially for bulk data transfers, and can
put significant strains on system resources, such as host memory bandwidth,
PCIe bandwidth, etc. One important reason behind the current state is the
kernel’s lack of semantics to express device to network transfers.
* Proposal:
In this patch series we attempt to optimize this use case by implementing
socket APIs that enable the user to:
1. send device memory across the network directly, and
2. receive incoming network packets directly into device memory.
Packet _payloads_ go directly from the NIC to device memory for receive and from
device memory to NIC for transmit.
Packet _headers_ go to/from host memory and are processed by the TCP/IP stack
normally. The NIC _must_ support header split to achieve this.
Advantages:
- Alleviate host memory bandwidth pressure, compared to existing
network-transfer + device-copy semantics.
- Alleviate PCIe BW pressure, by limiting data transfer to the lowest level
of the PCIe tree, compared to traditional path which sends data through the
root complex.
* Patch overview:
** Part 1: netlink API
Gives user ability to bind dma-buf to an RX queue.
** Part 2: scatterlist support
Currently the standard for device memory sharing is DMABUF, which doesn't
generate struct pages. On the other hand, networking stack (skbs, drivers, and
page pool) operate on pages. We have 2 options:
1. Generate struct pages for dmabuf device memory, or,
2. Modify the networking stack to process scatterlist.
Approach #1 was attempted in RFC v1. RFC v2 implements approach #2.
** part 3: page pool support
We piggy back on page pool memory providers proposal:
https://github.com/kuba-moo/linux/tree/pp-providers
It allows the page pool to define a memory provider that provides the
page allocation and freeing. It helps abstract most of the device memory
TCP changes from the driver.
** part 4: support for unreadable skb frags
Page pool iovs are not accessible by the host; we implement changes
throughput the networking stack to correctly handle skbs with unreadable
frags.
** Part 5: recvmsg() APIs
We define user APIs for the user to send and receive device memory.
Not included with this series is the GVE devmem TCP support, just to
simplify the review. Code available here if desired:
https://github.com/mina/linux/tree/tcpdevmem
This series is built on top of net-next with Jakub's pp-providers changes
cherry-picked.
* NIC dependencies:
1. (strict) Devmem TCP require the NIC to support header split, i.e. the
capability to split incoming packets into a header + payload and to put
each into a separate buffer. Devmem TCP works by using device memory
for the packet payload, and host memory for the packet headers.
2. (optional) Devmem TCP works better with flow steering support & RSS support,
i.e. the NIC's ability to steer flows into certain rx queues. This allows the
sysadmin to enable devmem TCP on a subset of the rx queues, and steer
devmem TCP traffic onto these queues and non devmem TCP elsewhere.
The NIC I have access to with these properties is the GVE with DQO support
running in Google Cloud, but any NIC that supports these features would suffice.
I may be able to help reviewers bring up devmem TCP on their NICs.
* Testing:
The series includes a udmabuf kselftest that show a simple use case of
devmem TCP and validates the entire data path end to end without
a dependency on a specific dmabuf provider.
** Test Setup
Kernel: net-next with this series and memory provider API cherry-picked
locally.
Hardware: Google Cloud A3 VMs.
NIC: GVE with header split & RSS & flow steering support.
Cc: Pavel Begunkov <asml.silence(a)gmail.com>
Cc: David Wei <dw(a)davidwei.uk>
Cc: Jason Gunthorpe <jgg(a)ziepe.ca>
Cc: Yunsheng Lin <linyunsheng(a)huawei.com>
Cc: Shailend Chand <shailend(a)google.com>
Cc: Harshitha Ramamurthy <hramamurthy(a)google.com>
Cc: Shakeel Butt <shakeelb(a)google.com>
Cc: Jeroen de Borst <jeroendb(a)google.com>
Cc: Praveen Kaligineedi <pkaligineedi(a)google.com>
Jakub Kicinski (1):
net: page_pool: create hooks for custom page providers
Mina Almasry (14):
queue_api: define queue api
net: page_pool: factor out page_pool recycle check
net: netdev netlink api to bind dma-buf to a net device
netdev: support binding dma-buf to netdevice
netdev: netdevice devmem allocator
page_pool: convert to use netmem
page_pool: devmem support
memory-provider: dmabuf devmem memory provider
net: support non paged skb frags
net: add support for skbs with unreadable frags
tcp: RX path for devmem TCP
net: add SO_DEVMEM_DONTNEED setsockopt to release RX frags
net: add devmem TCP documentation
selftests: add ncdevmem, netcat for devmem TCP
Documentation/netlink/specs/netdev.yaml | 52 +++
Documentation/networking/devmem.rst | 271 ++++++++++++
Documentation/networking/index.rst | 1 +
arch/alpha/include/uapi/asm/socket.h | 6 +
arch/mips/include/uapi/asm/socket.h | 6 +
arch/parisc/include/uapi/asm/socket.h | 6 +
arch/sparc/include/uapi/asm/socket.h | 6 +
include/linux/netdevice.h | 24 ++
include/linux/skbuff.h | 67 ++-
include/linux/socket.h | 1 +
include/net/devmem.h | 127 ++++++
include/net/netdev_rx_queue.h | 1 +
include/net/netmem.h | 234 +++++++++-
include/net/page_pool/helpers.h | 154 +++++--
include/net/page_pool/types.h | 28 +-
include/net/sock.h | 2 +
include/net/tcp.h | 5 +-
include/trace/events/page_pool.h | 29 +-
include/uapi/asm-generic/socket.h | 6 +
include/uapi/linux/netdev.h | 19 +
include/uapi/linux/uio.h | 14 +
net/bpf/test_run.c | 5 +-
net/core/Makefile | 2 +-
net/core/datagram.c | 6 +
net/core/dev.c | 6 +-
net/core/devmem.c | 413 ++++++++++++++++++
net/core/gro.c | 7 +-
net/core/netdev-genl-gen.c | 19 +
net/core/netdev-genl-gen.h | 2 +
net/core/netdev-genl.c | 123 ++++++
net/core/page_pool.c | 362 +++++++++-------
net/core/skbuff.c | 110 ++++-
net/core/sock.c | 61 +++
net/ipv4/tcp.c | 257 ++++++++++-
net/ipv4/tcp_input.c | 13 +-
net/ipv4/tcp_ipv4.c | 9 +
net/ipv4/tcp_output.c | 5 +-
net/packet/af_packet.c | 4 +-
tools/include/uapi/linux/netdev.h | 19 +
tools/testing/selftests/net/.gitignore | 1 +
tools/testing/selftests/net/Makefile | 5 +
tools/testing/selftests/net/ncdevmem.c | 546 ++++++++++++++++++++++++
42 files changed, 2764 insertions(+), 270 deletions(-)
create mode 100644 Documentation/networking/devmem.rst
create mode 100644 include/net/devmem.h
create mode 100644 net/core/devmem.c
create mode 100644 tools/testing/selftests/net/ncdevmem.c
--
2.44.0.rc1.240.g4c46232300-goog
Here are some patches from Geliang, doing different cleanups, and
supporting 'ip mptcp' in more MPTCP selftests.
Patch 1 checks that TC is available in selftests requiring it.
Patch 2 adds 'ms' units in TC commands, to avoid confusions.
Patches 3-9 are some prerequisites for patch 10: some export code from
mptcp_join.sh to mptcp_lib.sh, to be re-used in pm_netlink.sh,
mptcp_sockopt.sh and simult_flows.sh ; and others add helpers to
pm_netlink.sh to easily support both 'ip mptcp' and 'pm_nl_ctl' tools to
interact with the in-kernel MPTCP path-manager.
Patch 10 adds a '-i' parameter in mptcp_sockopt.sh, pm_netlink.sh, and
simult_flows.sh to use 'ip mptcp' tool instead of 'pm_nl_ctl'.
Patch 11 fixes some ShellCheck warnings in pm_netlink.sh, in order to
drop a ShellCheck's 'disable' instruction.
Signed-off-by: Matthieu Baerts (NGI0) <matttbe(a)kernel.org>
---
Geliang Tang (11):
selftests: mptcp: add tc check for check_tools
selftests: mptcp: add ms units for tc-netem delay
selftests: mptcp: export ip_mptcp to mptcp_lib
selftests: mptcp: netlink: add 'limits' helpers
selftests: mptcp: add {get,format}_endpoint(s) helpers
selftests: mptcp: netlink: add change_address helper
selftests: mptcp: join: update endpoint ops
selftests: mptcp: export pm_nl endpoint ops
selftests: mptcp: use pm_nl endpoint ops
selftests: mptcp: ip_mptcp option for more scripts
selftests: mptcp: netlink: drop disable=SC2086
tools/testing/selftests/net/mptcp/mptcp_connect.sh | 2 +-
tools/testing/selftests/net/mptcp/mptcp_join.sh | 155 ++----------
tools/testing/selftests/net/mptcp/mptcp_lib.sh | 135 ++++++++++
tools/testing/selftests/net/mptcp/mptcp_sockopt.sh | 34 ++-
tools/testing/selftests/net/mptcp/pm_netlink.sh | 281 +++++++++++++--------
tools/testing/selftests/net/mptcp/simult_flows.sh | 20 +-
6 files changed, 375 insertions(+), 252 deletions(-)
---
base-commit: d76c740b2eaaddc5fc3a8b21eaec5b6b11e8c3f5
change-id: 20240405-upstream-net-next-20240405-mptcp-selftests-refactoring-f5ed9780df8e
Best regards,
--
Matthieu Baerts (NGI0) <matttbe(a)kernel.org>
Currently the options for writing networking tests are C, bash or
some mix of the two. YAML/Netlink gives us the ability to easily
interface with Netlink in higher level laguages. In particular,
there is a Python library already available in tree, under tools/net.
Add the scaffolding which allows writing tests using this library.
The "scaffolding" is needed because the library lives under
tools/net and uses YAML files from under Documentation/.
So we need a small amount of glue code to find those things
and add them to TEST_FILES.
This series adds both a basic SW sanity test and driver
test which can be run against netdevsim or a real device.
When I develop core code I usually test with netdevsim,
then a real device, and then a backport to Meta's kernel.
Because of the lack of integration, until now I had
to throw away the (YNL-based) test script and netdevsim code.
Running tests in tree directly:
$ ./tools/testing/selftests/net/nl_netdev.py
KTAP version 1
1..2
ok 1 nl_netdev.empty_check
ok 2 nl_netdev.lo_check
# Totals: pass:2 fail:0 xfail:0 xpass:0 skip:0 error:0
in tree via make:
$ make -C tools/testing/selftests/ TARGETS=net \
TEST_PROGS=nl_netdev.py TEST_GEN_PROGS="" run_tests
[ ... ]
and installed externally, all seem to work:
$ make -C tools/testing/selftests/ TARGETS=net \
install INSTALL_PATH=/tmp/ksft-net
$ /tmp/ksft-net/run_kselftest.sh -t net:nl_netdev.py
[ ... ]
For driver tests I followed the lead of net/forwarding and
get the device name from env and/or a config file.
v3:
- fix up netdevsim C
- various small nits in other patches (see changelog in patches)
v2: https://lore.kernel.org/all/20240403023426.1762996-1-kuba@kernel.org/
- don't add to TARGETS, create a deperate variable with deps
- support and use with
- support and use passing arguments to tests
v1: https://lore.kernel.org/all/20240402010520.1209517-1-kuba@kernel.org/
Jakub Kicinski (5):
selftests: net: add scaffolding for Netlink tests in Python
selftests: nl_netdev: add a trivial Netlink netdev test
netdevsim: report stats by default, like a real device
selftests: drivers: add scaffolding for Netlink tests in Python
testing: net-drv: add a driver test for stats reporting
drivers/net/netdevsim/ethtool.c | 11 ++
drivers/net/netdevsim/netdev.c | 49 ++++++++
tools/testing/selftests/Makefile | 10 +-
tools/testing/selftests/drivers/net/Makefile | 7 ++
.../testing/selftests/drivers/net/README.rst | 30 +++++
.../selftests/drivers/net/lib/py/__init__.py | 17 +++
.../selftests/drivers/net/lib/py/env.py | 52 ++++++++
tools/testing/selftests/drivers/net/stats.py | 86 +++++++++++++
tools/testing/selftests/net/Makefile | 1 +
tools/testing/selftests/net/lib/Makefile | 8 ++
.../testing/selftests/net/lib/py/__init__.py | 7 ++
tools/testing/selftests/net/lib/py/consts.py | 9 ++
tools/testing/selftests/net/lib/py/ksft.py | 96 +++++++++++++++
tools/testing/selftests/net/lib/py/nsim.py | 115 ++++++++++++++++++
tools/testing/selftests/net/lib/py/utils.py | 47 +++++++
tools/testing/selftests/net/lib/py/ynl.py | 49 ++++++++
tools/testing/selftests/net/nl_netdev.py | 24 ++++
17 files changed, 617 insertions(+), 1 deletion(-)
create mode 100644 tools/testing/selftests/drivers/net/Makefile
create mode 100644 tools/testing/selftests/drivers/net/README.rst
create mode 100644 tools/testing/selftests/drivers/net/lib/py/__init__.py
create mode 100644 tools/testing/selftests/drivers/net/lib/py/env.py
create mode 100755 tools/testing/selftests/drivers/net/stats.py
create mode 100644 tools/testing/selftests/net/lib/Makefile
create mode 100644 tools/testing/selftests/net/lib/py/__init__.py
create mode 100644 tools/testing/selftests/net/lib/py/consts.py
create mode 100644 tools/testing/selftests/net/lib/py/ksft.py
create mode 100644 tools/testing/selftests/net/lib/py/nsim.py
create mode 100644 tools/testing/selftests/net/lib/py/utils.py
create mode 100644 tools/testing/selftests/net/lib/py/ynl.py
create mode 100755 tools/testing/selftests/net/nl_netdev.py
--
2.44.0
From: Mark Rutland <mark.rutland(a)arm.com>
[ Upstream commit 8ecab2e64572f1aecdfc5a8feae748abda6e3347 ]
The event filter function test has been failing in our internal test
farm:
| # not ok 33 event filter function - test event filtering on functions
Running the test in verbose mode indicates that this is because the test
erroneously determines that kmem_cache_free() is the most common caller
of kmem_cache_free():
# # + cut -d: -f3 trace
# # + sed s/call_site=([^+]*)+0x.*/1/
# # + sort
# # + uniq -c
# # + sort
# # + tail -n 1
# # + sed s/^[ 0-9]*//
# # + target_func=kmem_cache_free
... and as kmem_cache_free() doesn't call itself, setting this as the
filter function for kmem_cache_free() results in no hits, and
consequently the test fails:
# # + grep kmem_cache_free trace
# # + grep kmem_cache_free
# # + wc -l
# # + hitcnt=0
# # + grep kmem_cache_free trace
# # + grep -v kmem_cache_free
# # + wc -l
# # + misscnt=0
# # + [ 0 -eq 0 ]
# # + exit_fail
This seems to be because the system in question has tasks with ':' in
their name (which a number of kernel worker threads have). These show up
in the trace, e.g.
test:.sh-1299 [004] ..... 2886.040608: kmem_cache_free: call_site=putname+0xa4/0xc8 ptr=000000000f4d22f4 name=names_cache
... and so when we try to extact the call_site with:
cut -d: -f3 trace | sed 's/call_site=\([^+]*\)+0x.*/\1/'
... the 'cut' command will extrace the column containing
'kmem_cache_free' rather than the column containing 'call_site=...', and
the 'sed' command will leave this unchanged. Consequently, the test will
decide to use 'kmem_cache_free' as the filter function, resulting in the
failure seen above.
Fix this by matching the 'call_site=<func>' part specifically to extract
the function name.
Signed-off-by: Mark Rutland <mark.rutland(a)arm.com>
Reported-by: Aishwarya TCV <aishwarya.tcv(a)arm.com>
Cc: Masami Hiramatsu <mhiramat(a)kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers(a)efficios.com>
Cc: Shuah Khan <shuah(a)kernel.org>
Cc: Steven Rostedt <rostedt(a)goodmis.org>
Cc: linux-kernel(a)vger.kernel.org
Cc: linux-kselftest(a)vger.kernel.org
Cc: linux-trace-kernel(a)vger.kernel.org
Acked-by: Masami Hiramatsu (Google) <mhiramat(a)kernel.org>
Signed-off-by: Shuah Khan <skhan(a)linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal(a)kernel.org>
---
.../selftests/ftrace/test.d/filter/event-filter-function.tc | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/tools/testing/selftests/ftrace/test.d/filter/event-filter-function.tc b/tools/testing/selftests/ftrace/test.d/filter/event-filter-function.tc
index 2de7c61d1ae30..3f74c09c56b62 100644
--- a/tools/testing/selftests/ftrace/test.d/filter/event-filter-function.tc
+++ b/tools/testing/selftests/ftrace/test.d/filter/event-filter-function.tc
@@ -24,7 +24,7 @@ echo 0 > events/enable
echo "Get the most frequently calling function"
sample_events
-target_func=`cut -d: -f3 trace | sed 's/call_site=\([^+]*\)+0x.*/\1/' | sort | uniq -c | sort | tail -n 1 | sed 's/^[ 0-9]*//'`
+target_func=`cat trace | grep -o 'call_site=\([^+]*\)' | sed 's/call_site=//' | sort | uniq -c | sort | tail -n 1 | sed 's/^[ 0-9]*//'`
if [ -z "$target_func" ]; then
exit_fail
fi
--
2.43.0
From: Mark Rutland <mark.rutland(a)arm.com>
[ Upstream commit 8ecab2e64572f1aecdfc5a8feae748abda6e3347 ]
The event filter function test has been failing in our internal test
farm:
| # not ok 33 event filter function - test event filtering on functions
Running the test in verbose mode indicates that this is because the test
erroneously determines that kmem_cache_free() is the most common caller
of kmem_cache_free():
# # + cut -d: -f3 trace
# # + sed s/call_site=([^+]*)+0x.*/1/
# # + sort
# # + uniq -c
# # + sort
# # + tail -n 1
# # + sed s/^[ 0-9]*//
# # + target_func=kmem_cache_free
... and as kmem_cache_free() doesn't call itself, setting this as the
filter function for kmem_cache_free() results in no hits, and
consequently the test fails:
# # + grep kmem_cache_free trace
# # + grep kmem_cache_free
# # + wc -l
# # + hitcnt=0
# # + grep kmem_cache_free trace
# # + grep -v kmem_cache_free
# # + wc -l
# # + misscnt=0
# # + [ 0 -eq 0 ]
# # + exit_fail
This seems to be because the system in question has tasks with ':' in
their name (which a number of kernel worker threads have). These show up
in the trace, e.g.
test:.sh-1299 [004] ..... 2886.040608: kmem_cache_free: call_site=putname+0xa4/0xc8 ptr=000000000f4d22f4 name=names_cache
... and so when we try to extact the call_site with:
cut -d: -f3 trace | sed 's/call_site=\([^+]*\)+0x.*/\1/'
... the 'cut' command will extrace the column containing
'kmem_cache_free' rather than the column containing 'call_site=...', and
the 'sed' command will leave this unchanged. Consequently, the test will
decide to use 'kmem_cache_free' as the filter function, resulting in the
failure seen above.
Fix this by matching the 'call_site=<func>' part specifically to extract
the function name.
Signed-off-by: Mark Rutland <mark.rutland(a)arm.com>
Reported-by: Aishwarya TCV <aishwarya.tcv(a)arm.com>
Cc: Masami Hiramatsu <mhiramat(a)kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers(a)efficios.com>
Cc: Shuah Khan <shuah(a)kernel.org>
Cc: Steven Rostedt <rostedt(a)goodmis.org>
Cc: linux-kernel(a)vger.kernel.org
Cc: linux-kselftest(a)vger.kernel.org
Cc: linux-trace-kernel(a)vger.kernel.org
Acked-by: Masami Hiramatsu (Google) <mhiramat(a)kernel.org>
Signed-off-by: Shuah Khan <skhan(a)linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal(a)kernel.org>
---
.../selftests/ftrace/test.d/filter/event-filter-function.tc | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/tools/testing/selftests/ftrace/test.d/filter/event-filter-function.tc b/tools/testing/selftests/ftrace/test.d/filter/event-filter-function.tc
index 2de7c61d1ae30..3f74c09c56b62 100644
--- a/tools/testing/selftests/ftrace/test.d/filter/event-filter-function.tc
+++ b/tools/testing/selftests/ftrace/test.d/filter/event-filter-function.tc
@@ -24,7 +24,7 @@ echo 0 > events/enable
echo "Get the most frequently calling function"
sample_events
-target_func=`cut -d: -f3 trace | sed 's/call_site=\([^+]*\)+0x.*/\1/' | sort | uniq -c | sort | tail -n 1 | sed 's/^[ 0-9]*//'`
+target_func=`cat trace | grep -o 'call_site=\([^+]*\)' | sed 's/call_site=//' | sort | uniq -c | sort | tail -n 1 | sed 's/^[ 0-9]*//'`
if [ -z "$target_func" ]; then
exit_fail
fi
--
2.43.0
From: Geliang Tang <tanggeliang(a)kylinos.cn>
Incorrect arguments are passed to fcntl() in test_sockmap.c when invoking
it to set file status flags. If O_NONBLOCK is used as 2nd argument and
passed into fcntl, -EINVAL will be returned (See do_fcntl() in fs/fcntl.c).
The correct approach is to use F_SETFL as 2nd argument, and O_NONBLOCK as
3rd one.
Fixes: 16962b2404ac ("bpf: sockmap, add selftests")
Signed-off-by: Geliang Tang <tanggeliang(a)kylinos.cn>
---
tools/testing/selftests/bpf/test_sockmap.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/tools/testing/selftests/bpf/test_sockmap.c b/tools/testing/selftests/bpf/test_sockmap.c
index 024a0faafb3b..34d6a1e6f664 100644
--- a/tools/testing/selftests/bpf/test_sockmap.c
+++ b/tools/testing/selftests/bpf/test_sockmap.c
@@ -603,7 +603,7 @@ static int msg_loop(int fd, int iov_count, int iov_length, int cnt,
struct timeval timeout;
fd_set w;
- fcntl(fd, fd_flags);
+ fcntl(fd, F_SETFL, fd_flags);
/* Account for pop bytes noting each iteration of apply will
* call msg_pop_data helper so we need to account for this
* by calculating the number of apply iterations. Note user
--
2.40.1
Introduce ring__consume_n() and ring_buffer__consume_n() API to
partially consume items from one (or more) ringbuffer(s).
This can be useful, for example, to consume just a single item or when
we need to copy multiple items to a limited user-space buffer from the
ringbuffer callback.
Practical example (where this API can be used):
https://github.com/sched-ext/scx/blob/b7c06b9ed9f72cad83c31e39e9c4e2cfd8683…
See also:
https://lore.kernel.org/lkml/20240310154726.734289-1-andrea.righi@canonical…
v4:
- add a selftest to test the new API
- open a new 1.5.0 cycle
v3:
- rename ring__consume_max() -> ring__consume_n() and
ring_buffer__consume_max() -> ring_buffer__consume_n()
- add new API to a new 1.5.0 cycle
- fixed minor nits / comments
v2:
- introduce a new API instead of changing the callback's retcode
behavior
Andrea Righi (4):
libbpf: Start v1.5 development cycle
libbpf: ringbuf: allow to consume up to a certain amount of items
libbpf: Add ring__consume_n / ring_buffer__consume_n
selftests/bpf: Add tests for ring__consume_n and ring_buffer__consume_n
tools/lib/bpf/libbpf.h | 12 +++++
tools/lib/bpf/libbpf.map | 6 +++
tools/lib/bpf/libbpf_version.h | 2 +-
tools/lib/bpf/ringbuf.c | 59 ++++++++++++++++++++----
tools/testing/selftests/bpf/prog_tests/ringbuf.c | 8 ++++
5 files changed, 76 insertions(+), 11 deletions(-)
This patchset allows for io_uring zerocopy to support REQ_F_CQE_SKIP,
skipping the normal completion notification, but not the zerocopy buffer
release notification.
This patchset also includes a test to test these changes, and a patch to
mini_liburing to enable io_uring_peek_cqe, which is needed for the test.
Oliver Crumrine (3):
io_uring: Add REQ_F_CQE_SKIP support for io_uring zerocopy
io_uring: Add io_uring_peek_cqe to mini_liburing
io_uring: Support IOSQE_CQE_SKIP_SUCCESS in io_uring zerocopy test
io_uring/net.c | 6 +--
tools/include/io_uring/mini_liburing.h | 18 +++++++++
.../selftests/net/io_uring_zerocopy_tx.c | 37 +++++++++++++++++--
.../selftests/net/io_uring_zerocopy_tx.sh | 7 +++-
4 files changed, 59 insertions(+), 10 deletions(-)
--
2.44.0
This series aims to improve the usability of the ftrace selftests when
running as part of the kselftest runner, mainly for use with automated
systems. It fixes the output of verbose mode when run in KTAP output
mode and then enables verbose mode by default when invoked from the
kselftest runner so that the diagnostic information is there by default
when run in automated systems.
I've split this into two patches in case there is a concern with one
part but not the other, especially given the verbosity of the verbose
output when it triggers.
Signed-off-by: Mark Brown <broonie(a)kernel.org>
---
Mark Brown (2):
tracing/selftests: Support log output when generating KTAP output
tracing/selftests: Default to verbose mode when running in kselftest
tools/testing/selftests/ftrace/ftracetest | 8 +++++++-
tools/testing/selftests/ftrace/ftracetest-ktap | 2 +-
2 files changed, 8 insertions(+), 2 deletions(-)
---
base-commit: 4cece764965020c22cff7665b18a012006359095
change-id: 20240319-kselftest-ftrace-ktap-verbose-72e37957e213
Best regards,
--
Mark Brown <broonie(a)kernel.org>
Earlier commit fc8b2a619469378 ("net: more strict VIRTIO_NET_HDR_GSO_UDP_L4 validation")
added check of potential number of UDP segment vs UDP_MAX_SEGMENTS
in linux/virtio_net.h.
After this change certification test of USO guest-to-guest
transmit on Windows driver for virtio-net device fails,
for example with packet size of ~64K and mss of 536 bytes.
In general the USO should not be more restrictive than TSO.
Indeed, in case of unreasonably small mss a lot of segments
can cause queue overflow and packet loss on the destination.
Limit of 128 segments is good for any practical purpose,
with minimal meaningful mss of 536 the maximal UDP packet will
be divided to ~120 segments.
Signed-off-by: Yuri Benditovich <yuri.benditovich(a)daynix.com>
---
include/linux/udp.h | 2 +-
tools/testing/selftests/net/udpgso.c | 2 +-
2 files changed, 2 insertions(+), 2 deletions(-)
diff --git a/include/linux/udp.h b/include/linux/udp.h
index 3748e82b627b..7e75ccdf25fe 100644
--- a/include/linux/udp.h
+++ b/include/linux/udp.h
@@ -108,7 +108,7 @@ struct udp_sock {
#define udp_assign_bit(nr, sk, val) \
assign_bit(UDP_FLAGS_##nr, &udp_sk(sk)->udp_flags, val)
-#define UDP_MAX_SEGMENTS (1 << 6UL)
+#define UDP_MAX_SEGMENTS (1 << 7UL)
#define udp_sk(ptr) container_of_const(ptr, struct udp_sock, inet.sk)
diff --git a/tools/testing/selftests/net/udpgso.c b/tools/testing/selftests/net/udpgso.c
index 1d975bf52af3..85b3baa3f7f3 100644
--- a/tools/testing/selftests/net/udpgso.c
+++ b/tools/testing/selftests/net/udpgso.c
@@ -34,7 +34,7 @@
#endif
#ifndef UDP_MAX_SEGMENTS
-#define UDP_MAX_SEGMENTS (1 << 6UL)
+#define UDP_MAX_SEGMENTS (1 << 7UL)
#endif
#define CONST_MTU_TEST 1500
--
2.34.3
"Bail out! " is not descriptive. It rather should be: "Failed: " and
then this added prefix doesn't need to be added everywhere. Usually in
the logs, we are searching for "Failed" or "Error" instead of "Bail
out" so it must be replace.
Remove Error/Failed prefixes from all usages as well.
Muhammad Usama Anjum (2):
selftests: Replace "Bail out" with "Error"
selftests: Remove Error/Failed prefix from ksft_exit_fail*() usages
tools/testing/selftests/exec/load_address.c | 8 +-
.../testing/selftests/exec/recursion-depth.c | 10 +-
tools/testing/selftests/kselftest.h | 2 +-
.../selftests/mm/map_fixed_noreplace.c | 24 +--
tools/testing/selftests/mm/map_populate.c | 2 +-
tools/testing/selftests/mm/mremap_dontunmap.c | 2 +-
tools/testing/selftests/mm/pagemap_ioctl.c | 166 +++++++++---------
.../selftests/mm/split_huge_page_test.c | 2 +-
8 files changed, 108 insertions(+), 108 deletions(-)
--
2.39.2
New version of the sleepable bpf_timer code, without the HID changes, as
they can now go through the HID tree indepandantly.
For reference, the use cases I have in mind:
---
Basically, I need to be able to defer a HID-BPF program for the
following reasons (from the aforementioned patch):
1. defer an event:
Sometimes we receive an out of proximity event, but the device can not
be trusted enough, and we need to ensure that we won't receive another
one in the following n milliseconds. So we need to wait those n
milliseconds, and eventually re-inject that event in the stack.
2. inject new events in reaction to one given event:
We might want to transform one given event into several. This is the
case for macro keys where a single key press is supposed to send
a sequence of key presses. But this could also be used to patch a
faulty behavior, if a device forgets to send a release event.
3. communicate with the device in reaction to one event:
We might want to communicate back to the device after a given event.
For example a device might send us an event saying that it came back
from sleeping state and needs to be re-initialized.
Currently we can achieve that by keeping a userspace program around,
raise a bpf event, and let that userspace program inject the events and
commands.
However, we are just keeping that program alive as a daemon for just
scheduling commands. There is no logic in it, so it doesn't really justify
an actual userspace wakeup. So a kernel workqueue seems simpler to handle.
bpf_timers are currently running in a soft IRQ context, this patch
series implements a sleppable context for them.
Cheers,
Benjamin
To: Alexei Starovoitov <ast(a)kernel.org>
To: Daniel Borkmann <daniel(a)iogearbox.net>
To: Andrii Nakryiko <andrii(a)kernel.org>
To: Martin KaFai Lau <martin.lau(a)linux.dev>
To: Eduard Zingerman <eddyz87(a)gmail.com>
To: Song Liu <song(a)kernel.org>
To: Yonghong Song <yonghong.song(a)linux.dev>
To: John Fastabend <john.fastabend(a)gmail.com>
To: KP Singh <kpsingh(a)kernel.org>
To: Stanislav Fomichev <sdf(a)google.com>
To: Hao Luo <haoluo(a)google.com>
To: Jiri Olsa <jolsa(a)kernel.org>
To: Mykola Lysenko <mykolal(a)fb.com>
To: Shuah Khan <shuah(a)kernel.org>
Cc: Benjamin Tissoires <bentiss(a)kernel.org>
Cc: <bpf(a)vger.kernel.org>
Cc: <linux-kernel(a)vger.kernel.org>
Cc: <linux-kselftest(a)vger.kernel.org>
---
Changes in v5:
- took various reviews into account
- rewrote the tests to be separated to not have a uggly include
- Link to v4: https://lore.kernel.org/r/20240315-hid-bpf-sleepable-v4-0-5658f2540564@kern…
Changes in v4:
- dropped the HID changes, they can go independently from bpf-core
- addressed Alexei's and Eduard's remarks
- added selftests
- Link to v3: https://lore.kernel.org/r/20240221-hid-bpf-sleepable-v3-0-1fb378ca6301@kern…
Changes in v3:
- fixed the crash from v2
- changed the API to have only BPF_F_TIMER_SLEEPABLE for
bpf_timer_start()
- split the new kfuncs/verifier patch into several sub-patches, for
easier reviews
- Link to v2: https://lore.kernel.org/r/20240214-hid-bpf-sleepable-v2-0-5756b054724d@kern…
Changes in v2:
- make use of bpf_timer (and dropped the custom HID handling)
- implemented bpf_timer_set_sleepable_cb as a kfunc
- still not implemented global subprogs
- no sleepable bpf_timer selftests yet
- Link to v1: https://lore.kernel.org/r/20240209-hid-bpf-sleepable-v1-0-4cc895b5adbd@kern…
---
Benjamin Tissoires (6):
bpf/helpers: introduce sleepable bpf_timers
bpf/verifier: add bpf_timer as a kfunc capable type
bpf/helpers: introduce bpf_timer_set_sleepable_cb() kfunc
bpf/helpers: mark the callback of bpf_timer_set_sleepable_cb() as sleepable
tools: sync include/uapi/linux/bpf.h
selftests/bpf: add sleepable timer tests
include/linux/bpf_verifier.h | 1 +
include/uapi/linux/bpf.h | 4 +
kernel/bpf/helpers.c | 132 ++++++++++++++-
kernel/bpf/verifier.c | 96 ++++++++++-
tools/include/uapi/linux/bpf.h | 4 +
tools/testing/selftests/bpf/bpf_experimental.h | 5 +
.../selftests/bpf/bpf_testmod/bpf_testmod.c | 5 +
.../selftests/bpf/bpf_testmod/bpf_testmod_kfunc.h | 1 +
tools/testing/selftests/bpf/prog_tests/timer.c | 34 ++++
.../testing/selftests/bpf/progs/timer_sleepable.c | 185 +++++++++++++++++++++
10 files changed, 458 insertions(+), 9 deletions(-)
---
base-commit: 9187210eee7d87eea37b45ea93454a88681894a4
change-id: 20240205-hid-bpf-sleepable-c01260fd91c4
Best regards,
--
Benjamin Tissoires <bentiss(a)kernel.org>
These patches from Geliang add support for the "last time" field in
MPTCP Info, and verify that the counters look valid.
Patch 1 adds these counters: last_data_sent, last_data_recv and
last_ack_recv. They are available in the MPTCP Info, so exposed via
getsockopt(MPTCP_INFO) and the Netlink Diag interface.
Patch 2 adds a test in diag.sh MPTCP selftest, to check that the
counters have moved by at least 250ms, after having waited twice that
time.
Signed-off-by: Matthieu Baerts (NGI0) <matttbe(a)kernel.org>
---
Geliang Tang (2):
mptcp: add last time fields in mptcp_info
selftests: mptcp: test last time mptcp_info
include/uapi/linux/mptcp.h | 4 +++
net/mptcp/options.c | 1 +
net/mptcp/protocol.c | 7 ++++
net/mptcp/protocol.h | 3 ++
net/mptcp/sockopt.c | 4 +++
tools/testing/selftests/net/mptcp/diag.sh | 53 +++++++++++++++++++++++++++++++
6 files changed, 72 insertions(+)
---
base-commit: d76c740b2eaaddc5fc3a8b21eaec5b6b11e8c3f5
change-id: 20240405-upstream-net-next-20240405-mptcp-last-time-info-9b03618e08f1
Best regards,
--
Matthieu Baerts (NGI0) <matttbe(a)kernel.org>
Currently the options for writing networking tests are C, bash or
some mix of the two. YAML/Netlink gives us the ability to easily
interface with Netlink in higher level laguages. In particular,
there is a Python library already available in tree, under tools/net.
Add the scaffolding which allows writing tests using this library.
The "scaffolding" is needed because the library lives under
tools/net and uses YAML files from under Documentation/.
So we need a small amount of glue code to find those things
and add them to TEST_FILES.
This series adds both a basic SW sanity test and driver
test which can be run against netdevsim or a real device.
When I develop core code I usually test with netdevsim,
then a real device, and then a backport to Meta's kernel.
Because of the lack of integration, until now I had
to throw away the (YNL-based) test script and netdevsim code.
Running tests in tree directly:
$ ./tools/testing/selftests/net/nl_netdev.py
KTAP version 1
1..2
ok 1 nl_netdev.empty_check
ok 2 nl_netdev.lo_check
# Totals: pass:2 fail:0 xfail:0 xpass:0 skip:0 error:0
in tree via make:
$ make -C tools/testing/selftests/ TARGETS=net \
TEST_PROGS=nl_netdev.py TEST_GEN_PROGS="" run_tests
[ ... ]
and installed externally, all seem to work:
$ make -C tools/testing/selftests/ TARGETS=net \
install INSTALL_PATH=/tmp/ksft-net
$ /tmp/ksft-net/run_kselftest.sh -t net:nl_netdev.py
[ ... ]
For driver tests I followed the lead of net/forwarding and
get the device name from env and/or a config file.
v2: (see patches for minor changes)
- don't add to TARGETS, create a deperate variable with deps
- support and use with
- support and use passing arguments to tests
v1: https://lore.kernel.org/all/20240402010520.1209517-1-kuba@kernel.org/
Jakub Kicinski (7):
netlink: specs: define ethtool header flags
tools: ynl: copy netlink error to NlError
selftests: net: add scaffolding for Netlink tests in Python
selftests: nl_netdev: add a trivial Netlink netdev test
netdevsim: report stats by default, like a real device
selftests: drivers: add scaffolding for Netlink tests in Python
testing: net-drv: add a driver test for stats reporting
Documentation/netlink/specs/ethtool.yaml | 6 +
drivers/net/netdevsim/ethtool.c | 11 ++
drivers/net/netdevsim/netdev.c | 45 +++++++
tools/net/ynl/lib/ynl.py | 3 +-
tools/testing/selftests/Makefile | 10 +-
tools/testing/selftests/drivers/net/Makefile | 7 ++
.../testing/selftests/drivers/net/README.rst | 30 +++++
.../selftests/drivers/net/lib/py/__init__.py | 17 +++
.../selftests/drivers/net/lib/py/env.py | 52 ++++++++
tools/testing/selftests/drivers/net/stats.py | 86 +++++++++++++
tools/testing/selftests/net/Makefile | 1 +
tools/testing/selftests/net/lib/Makefile | 8 ++
.../testing/selftests/net/lib/py/__init__.py | 7 ++
tools/testing/selftests/net/lib/py/consts.py | 9 ++
tools/testing/selftests/net/lib/py/ksft.py | 96 ++++++++++++++
tools/testing/selftests/net/lib/py/nsim.py | 118 ++++++++++++++++++
tools/testing/selftests/net/lib/py/utils.py | 47 +++++++
tools/testing/selftests/net/lib/py/ynl.py | 49 ++++++++
tools/testing/selftests/net/nl_netdev.py | 24 ++++
19 files changed, 624 insertions(+), 2 deletions(-)
create mode 100644 tools/testing/selftests/drivers/net/Makefile
create mode 100644 tools/testing/selftests/drivers/net/README.rst
create mode 100644 tools/testing/selftests/drivers/net/lib/py/__init__.py
create mode 100644 tools/testing/selftests/drivers/net/lib/py/env.py
create mode 100755 tools/testing/selftests/drivers/net/stats.py
create mode 100644 tools/testing/selftests/net/lib/Makefile
create mode 100644 tools/testing/selftests/net/lib/py/__init__.py
create mode 100644 tools/testing/selftests/net/lib/py/consts.py
create mode 100644 tools/testing/selftests/net/lib/py/ksft.py
create mode 100644 tools/testing/selftests/net/lib/py/nsim.py
create mode 100644 tools/testing/selftests/net/lib/py/utils.py
create mode 100644 tools/testing/selftests/net/lib/py/ynl.py
create mode 100755 tools/testing/selftests/net/nl_netdev.py
--
2.44.0
This patchset allows for io_uring zerocopy to support REQ_F_CQE_SKIP,
skipping the normal completion notification, but not the zerocopy buffer
release notification.
This patchset also includes a test to test these changes, and a patch to
mini_liburing to enable io_uring_peek_cqe, which is needed for the test.
Oliver Crumrine (3):
io_uring: Add REQ_F_CQE_SKIP support for io_uring zerocopy
io_uring: Add io_uring_peek_cqe to mini_liburing
io_uring: Support IOSQE_CQE_SKIP_SUCCESS in io_uring zerocopy test
io_uring/net.c | 6 +--
tools/include/io_uring/mini_liburing.h | 18 +++++++++
.../selftests/net/io_uring_zerocopy_tx.c | 37 +++++++++++++++++--
.../selftests/net/io_uring_zerocopy_tx.sh | 7 +++-
4 files changed, 59 insertions(+), 10 deletions(-)
--
2.44.0
Hi,
As mentioned in each patch, this implements the solution that we discussed in
December 2023, in [1]. This turned out to be very clean and easy. It should also
be quite easy to maintain.
This should also make Peter Zijlstra happy, because it directly addresses the
root cause of his "NAK NAK NAK" reply [2]. :)
I haven't done much build testing, because selftests are not so easy to build
with a cross-compiler. So it's just tested on x86 64-bit so far.
[1] https://lore.kernel.org/all/783a4178-1dec-4e30-989a-5174b8176b09@redhat.com/
[2] https://lore.kernel.org/lkml/20231103121652.GA6217@noisy.programming.kicks-…
Cc: David Hildenbrand <david(a)redhat.com>
Cc: Mark Brown <broonie(a)kernel.org>
Cc: Muhammad Usama Anjum <usama.anjum(a)collabora.com>
Cc: Suren Baghdasaryan <surenb(a)google.com>
Cc: Peter Zijlstra <peterz(a)infradead.org>
John Hubbard (2):
selftests: break the dependency upon local header files
selftests/mm: fix additional build errors for selftests
tools/include/uapi/linux/memfd.h | 39 +++
tools/include/uapi/linux/userfaultfd.h | 386 +++++++++++++++++++++++++
tools/testing/selftests/lib.mk | 9 +
tools/testing/selftests/mm/Makefile | 2 +-
4 files changed, 435 insertions(+), 1 deletion(-)
create mode 100644 tools/include/uapi/linux/memfd.h
create mode 100644 tools/include/uapi/linux/userfaultfd.h
base-commit: 98560e9019851bf55b8a4073978a623a3bcf98c0
--
2.44.0
In this series, ksft_exit_fail_perror() is being added which is helper
function on top of ksft_exit_fail_msg(). It prints errno and its string
form always. After writing and porting several kselftests, I've found
out that most of times ksft_exit_fail_msg() isn't useful if errno value
isn't printed. The ksft_exit_fail_perror() provides a convenient way to
always print errno when its used.
Muhammad Usama Anjum (2):
selftests: add ksft_exit_fail_perror()
selftests: exec: Use new ksft_exit_fail_perror() helper
tools/testing/selftests/exec/recursion-depth.c | 10 +++++-----
tools/testing/selftests/kselftest.h | 14 ++++++++++++++
2 files changed, 19 insertions(+), 5 deletions(-)
--
2.39.2
The comment on top of the file is used by many developers to glance over
all the available functions. Add the recently added ksft_perror() to it.
Signed-off-by: Muhammad Usama Anjum <usama.anjum(a)collabora.com>
---
tools/testing/selftests/kselftest.h | 1 +
1 file changed, 1 insertion(+)
diff --git a/tools/testing/selftests/kselftest.h b/tools/testing/selftests/kselftest.h
index 7d650a06ca359..159bf8e314fa3 100644
--- a/tools/testing/selftests/kselftest.h
+++ b/tools/testing/selftests/kselftest.h
@@ -16,6 +16,7 @@
* For each test, report any progress, debugging, etc with:
*
* ksft_print_msg(fmt, ...);
+ * ksft_perror(msg);
*
* and finally report the pass/fail/skip/xfail state of the test with one of:
*
--
2.39.2
Hi,
(This is verified on the second test box.)
In the most recent 6.8.0 release of torvalds tree kernel with selftest configs on,
process ./iommufd appears to consume 99% of a CPU core for quote a while in an
endless loop:
root 59502 8816 0 Mar11 pts/2 00:00:00 make OUTPUT=/home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu -C iommu run_tests O=/home/marvin/linux/kernel/linux_torvalds
root 59503 59502 0 Mar11 pts/2 00:00:00 /bin/sh -c BASE_DIR="/home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests"; . /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/kselftest/runner.sh; if [ "X" != "X" ]; then per_test_logging=1; fi; run_many /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu/iommufd /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu/iommufd_fail_nth
root 59516 59503 0 Mar11 pts/2 00:00:00 /bin/sh -c BASE_DIR="/home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests"; . /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/kselftest/runner.sh; if [ "X" != "X" ]; then per_test_logging=1; fi; run_many /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu/iommufd /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu/iommufd_fail_nth
root 59517 59516 0 Mar11 pts/2 00:00:00 /bin/sh -c BASE_DIR="/home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests"; . /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/kselftest/runner.sh; if [ "X" != "X" ]; then per_test_logging=1; fi; run_many /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu/iommufd /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu/iommufd_fail_nth
root 59518 59517 0 Mar11 pts/2 00:00:00 /bin/sh -c BASE_DIR="/home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests"; . /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/kselftest/runner.sh; if [ "X" != "X" ]; then per_test_logging=1; fi; run_many /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu/iommufd /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu/iommufd_fail_nth
root 59522 59518 0 Mar11 pts/2 00:00:00 /bin/sh -c BASE_DIR="/home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests"; . /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/kselftest/runner.sh; if [ "X" != "X" ]; then per_test_logging=1; fi; run_many /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu/iommufd /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu/iommufd_fail_nth
root 59523 59522 0 Mar11 pts/2 00:00:00 perl /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/kselftest/prefix.pl
root 59635 2367 99 Mar11 pts/2 11:28:03 ./iommufd
root@stargazer:/home/marvin# strace -p 59635
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
ioctl(5, _IOC(_IOC_NONE, 0x3b, 0xa0, 0), 0x7ffdd9eebc00) = 0
.
.
.
Please find attached config. It is the vanilla kernel, the build suite marked it "dirty"
because of the modifications to the selftests (adding debug option, mostly).
The kseltest output is:
make[3]: Entering directory '/home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu'
TAP version 13
1..2
# timeout set to 45
# selftests: iommu: iommufd
# TAP version 13
# 1..180
# # Starting 180 tests from 18 test cases.
# # RUN iommufd.simple_close ...
# # OK iommufd.simple_close
# ok 1 iommufd.simple_close
# # RUN iommufd.cmd_fail ...
# # OK iommufd.cmd_fail
# ok 2 iommufd.cmd_fail
# # RUN iommufd.cmd_length ...
# # OK iommufd.cmd_length
# ok 3 iommufd.cmd_length
# # RUN iommufd.cmd_ex_fail ...
# # OK iommufd.cmd_ex_fail
# ok 4 iommufd.cmd_ex_fail
# # RUN iommufd.global_options ...
# # OK iommufd.global_options
# ok 5 iommufd.global_options
# # RUN iommufd.simple_ioctls ...
# # OK iommufd.simple_ioctls
# ok 6 iommufd.simple_ioctls
# # RUN iommufd.unmap_cmd ...
# # OK iommufd.unmap_cmd
# ok 7 iommufd.unmap_cmd
# # RUN iommufd.map_cmd ...
# # OK iommufd.map_cmd
# ok 8 iommufd.map_cmd
# # RUN iommufd.info_cmd ...
# # OK iommufd.info_cmd
# ok 9 iommufd.info_cmd
# # RUN iommufd.set_iommu_cmd ...
# # OK iommufd.set_iommu_cmd
# ok 10 iommufd.set_iommu_cmd
# # RUN iommufd.vfio_ioas ...
# # OK iommufd.vfio_ioas
# ok 11 iommufd.vfio_ioas
# # RUN iommufd_ioas.no_domain.ioas_auto_destroy ...
# # OK iommufd_ioas.no_domain.ioas_auto_destroy
# ok 12 iommufd_ioas.no_domain.ioas_auto_destroy
# # RUN iommufd_ioas.no_domain.ioas_destroy ...
# # OK iommufd_ioas.no_domain.ioas_destroy
# ok 13 iommufd_ioas.no_domain.ioas_destroy
# # RUN iommufd_ioas.no_domain.alloc_hwpt_nested ...
# # OK iommufd_ioas.no_domain.alloc_hwpt_nested
# ok 14 iommufd_ioas.no_domain.alloc_hwpt_nested
# # RUN iommufd_ioas.no_domain.hwpt_attach ...
# # iommufd.c:541:hwpt_attach:Expected 2 (2) == errno (22)
# # hwpt_attach: Test failed at step #6
# # FAIL iommufd_ioas.no_domain.hwpt_attach
# not ok 15 iommufd_ioas.no_domain.hwpt_attach
# # RUN iommufd_ioas.no_domain.ioas_area_destroy ...
# # OK iommufd_ioas.no_domain.ioas_area_destroy
# ok 16 iommufd_ioas.no_domain.ioas_area_destroy
# # RUN iommufd_ioas.no_domain.ioas_area_auto_destroy ...
# # OK iommufd_ioas.no_domain.ioas_area_auto_destroy
# ok 17 iommufd_ioas.no_domain.ioas_area_auto_destroy
# # RUN iommufd_ioas.no_domain.get_hw_info ...
# # OK iommufd_ioas.no_domain.get_hw_info
# ok 18 iommufd_ioas.no_domain.get_hw_info
# # RUN iommufd_ioas.no_domain.area ...
# # OK iommufd_ioas.no_domain.area
# ok 19 iommufd_ioas.no_domain.area
# # RUN iommufd_ioas.no_domain.unmap_fully_contained_areas ...
# # OK iommufd_ioas.no_domain.unmap_fully_contained_areas
# ok 20 iommufd_ioas.no_domain.unmap_fully_contained_areas
# # RUN iommufd_ioas.no_domain.area_auto_iova ...
# # OK iommufd_ioas.no_domain.area_auto_iova
# ok 21 iommufd_ioas.no_domain.area_auto_iova
# # RUN iommufd_ioas.no_domain.area_allowed ...
# # OK iommufd_ioas.no_domain.area_allowed
# ok 22 iommufd_ioas.no_domain.area_allowed
# # RUN iommufd_ioas.no_domain.copy_area ...
# # OK iommufd_ioas.no_domain.copy_area
# ok 23 iommufd_ioas.no_domain.copy_area
# # RUN iommufd_ioas.no_domain.iova_ranges ...
# # OK iommufd_ioas.no_domain.iova_ranges
# ok 24 iommufd_ioas.no_domain.iova_ranges
# # RUN iommufd_ioas.no_domain.access_domain_destory ...
# # iommufd.c:916:access_domain_destory:Expected MAP_FAILED (18446744073709551615) != buf (18446744073709551615)
# # access_domain_destory: Test terminated by timeout
# # FAIL iommufd_ioas.no_domain.access_domain_destory
# not ok 25 iommufd_ioas.no_domain.access_domain_destory
# # RUN iommufd_ioas.no_domain.access_pin ...
# # iommufd.c:991:access_pin:Expected 0 (0) == _test_cmd_mock_domain(self->fd, self->ioas_id, &mock_stdev_id, &mock_hwpt_id, ((void *)0)) (-1)
The failing assert seems to be here:
987 /* Add/remove a domain with a user */
988 ASSERT_EQ(0, ioctl(self->fd,
989 _IOMMU_TEST_CMD(IOMMU_TEST_OP_ACCESS_PAGES),
990 &access_cmd));
→ 991 test_cmd_mock_domain(self->ioas_id, &mock_stdev_id,
992 &mock_hwpt_id, NULL);
993 check_map_cmd.id = mock_hwpt_id;
994 ASSERT_EQ(0, ioctl(self->fd,
995 _IOMMU_TEST_CMD(IOMMU_TEST_OP_MD_CHECK_MAP),
996 &check_map_cmd));
For those of you who still do not have a clue what went wrong (like myself), I am trying
to generate a reproducer.
attempt to tap gdb on the running ./iommufd gave this:
root@defiant:/home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu# gdb ./iommufd --pid 63963
GNU gdb (Ubuntu 12.1-0ubuntu1~22.04.1) 12.1
Copyright (C) 2022 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<https://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ./iommufd...
Attaching to program: /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu/iommufd, process 63963
Reading symbols from /usr/libexec/coreutils/libstdbuf.so...
(No debugging symbols found in /usr/libexec/coreutils/libstdbuf.so)
Reading symbols from /lib/x86_64-linux-gnu/libc.so.6...
Reading symbols from /usr/lib/debug/.build-id/c2/89da5071a3399de893d2af81d6a30c62646e1e.debug...
Reading symbols from /lib64/ld-linux-x86-64.so.2...
Reading symbols from /usr/lib/debug/.build-id/15/921ea631d9f36502d20459c43e5c85b7d6ab76.debug...
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
__GI___ioctl (fd=5, request=request@entry=15264) at ../sysdeps/unix/sysv/linux/ioctl.c:36
36 ../sysdeps/unix/sysv/linux/ioctl.c: No such file or directory.
(gdb) bt
#0 __GI___ioctl (fd=5, request=request@entry=15264) at ../sysdeps/unix/sysv/linux/ioctl.c:36
#1 0x000057ed23d1f1ae in _test_ioctl_set_temp_memory_limit (limit=65536, fd=<optimized out>) at /home/marvin/linux/kernel/linux_torvalds/tools/testing/selftests/iommu/iommufd_utils.h:585
#2 iommufd_ioas_teardown (_metadata=_metadata@entry=0x57ed23d42860 <_iommufd_ioas_access_domain_destory_object>, self=self@entry=0x7ffdcdce5ef0, variant=<optimized out>) at iommufd.c:229
#3 0x000057ed23d23b7f in wrapper_iommufd_ioas_access_domain_destory (_metadata=0x57ed23d42860 <_iommufd_ioas_access_domain_destory_object>, variant=0x57ed23d43860 <_iommufd_ioas_mock_domain_object>) at iommufd.c:902
#4 0x000057ed23d1bfe9 in __run_test (f=f@entry=0x57ed23d438a0 <_iommufd_ioas_fixture_object>, variant=variant@entry=0x57ed23d43860 <_iommufd_ioas_mock_domain_object>,
t=t@entry=0x57ed23d42860 <_iommufd_ioas_access_domain_destory_object>) at ../kselftest_harness.h:1134
#5 0x000057ed23d12146 in test_harness_run (argv=0x7ffdcdce61a8, argc=1) at ../kselftest_harness.h:1199
#6 main (argc=1, argv=0x7ffdcdce61a8) at iommufd.c:2349
(gdb) list iommufd.c:2349
2344 &unmap_cmd));
2345 }
2346 }
2347 }
2348
2349 TEST_HARNESS_MAIN
(gdb)
Hope this helps someone.
Best regards,
Mirsad Todorovac
This patch addresses an issue in the selftests/harness where an assertion within FIXTURE_TEARDOWN could trigger an infinite loop. The problem arises because the teardown procedure is meant to execute once, but the presence of failing assertions (ASSERT_EQ(0, 1)) leads to repeated attempts to execute teardown due to the long jump mechanism used by the harness for handling assertions.
To resolve this, the patch ensures that the teardown process runs only once, regardless of assertion outcomes, preventing the infinite loop and allowing tests to fail.
Signed-off-by: Shengyu Li <shengyu.li.evgeny(a)gmail.com>
---
tools/testing/selftests/kselftest_harness.h | 5 ++++-
1 file changed, 4 insertions(+), 1 deletion(-)
diff --git a/tools/testing/selftests/kselftest_harness.h b/tools/testing/selftests/kselftest_harness.h
index 4fd735e48ee7..230d62884885 100644
--- a/tools/testing/selftests/kselftest_harness.h
+++ b/tools/testing/selftests/kselftest_harness.h
@@ -383,6 +383,7 @@
FIXTURE_DATA(fixture_name) self; \
pid_t child = 1; \
int status = 0; \
+ bool jmp = false; \
memset(&self, 0, sizeof(FIXTURE_DATA(fixture_name))); \
if (setjmp(_metadata->env) == 0) { \
/* Use the same _metadata. */ \
@@ -399,8 +400,10 @@
_metadata->exit_code = KSFT_FAIL; \
} \
} \
+ else \
+ jmp = true; \
if (child == 0) { \
- if (_metadata->setup_completed && !_metadata->teardown_parent) \
+ if (_metadata->setup_completed && !_metadata->teardown_parent && !jmp) \
fixture_name##_teardown(_metadata, &self, variant->data); \
_exit(0); \
} \
--
2.25.1
Hi,
We have caught bugs in kselftest suites on linux-next and on stable-RCs etc
when using clang. There are two types of bugs (logs with clang-17 are
attached.):
As usually people use GCC, there are GCC-specific flags added to the
Makefiles that clang doesn't recognize. For example:
* clang: error: argument unused during compilation: '-pie'
[-Werror,-Wunused-command-line-argument]
* clang: error: unknown argument '-static-libasan'; did you mean
'-static-libsan'?
* clang: error: cannot specify -o when generating multiple output files
Clang has best static analysis tools. It is reporting static errors. For
example:
* test_execve.c:121:13: warning: variable 'have_outer_privilege' is used
uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized]
* test_execve.c:121:9: note: remove the 'if' if its condition is always true
* test_memcontrol.c:727:6: warning: variable 'fd' is used uninitialized
whenever 'if' condition is true [-Wsometimes-uninitialized]
We have found these issues through our new KernelCI system when enabling
kselftest and clang there. The new system dashboard is a WIP, so It is not
the web dashboard you are used-to with in KernelCI. We can show you ways of
pulling the data if you are interest into.
Unless the above is some sort of false-positive or misconfiguration, it
would be great to support clang for kselftests. What we can do from our
side is that clang kselftests builds should be enabled on KernelCI to find
and fix the errors. What is your stance about this?
Thanks,
Usama
Currently the options for writing networking tests are C, bash or
some mix of the two. YAML/Netlink gives us the ability to easily
interface with Netlink in higher level laguages. In particular,
there is a Python library already available in tree, under tools/net.
Add the scaffolding which allows writing tests using this library.
The "scaffolding" is needed because the library lives under
tools/net and uses YAML files from under Documentation/.
So we need a small amount of glue code to find those things
and add them to TEST_FILES.
This series adds both a basic SW sanity test and driver
test which can be run against netdevsim or a real device.
When I develop core code I usually test with netdevsim,
then a real device, and then a backport to Meta's kernel.
Because of the lack of integration, until now I had
to throw away the (YNL-based) test script and netdevsim code.
Running tests in tree directly:
$ ./tools/testing/selftests/net/nl_netdev.py
KTAP version 1
1..2
ok 1 nl_netdev.empty_check
ok 2 nl_netdev.lo_check
# Totals: pass:2 fail:0 xfail:0 xpass:0 skip:0 error:0
in tree via make:
$ make -C tools/testing/selftests/ TARGETS=net \
TEST_PROGS=nl_netdev.py TEST_GEN_PROGS="" run_tests
[ ... ]
and installed externally, all seem to work:
$ make -C tools/testing/selftests/ TARGETS=net \
install INSTALL_PATH=/tmp/ksft-net
$ /tmp/ksft-net/run_kselftest.sh -t net:nl_netdev.py
[ ... ]
For driver tests I followed the lead of net/forwarding and
get the device name from env and/or a config file.
Jakub Kicinski (7):
netlink: specs: define ethtool header flags
tools: ynl: copy netlink error to NlError
selftests: net: add scaffolding for Netlink tests in Python
selftests: nl_netdev: add a trivial Netlink netdev test
netdevsim: report stats by default, like a real device
selftests: drivers: add scaffolding for Netlink tests in Python
testing: net-drv: add a driver test for stats reporting
Documentation/netlink/specs/ethtool.yaml | 5 +
drivers/net/netdevsim/ethtool.c | 11 ++
drivers/net/netdevsim/netdev.c | 45 +++++++
tools/net/ynl/lib/ynl.py | 3 +-
tools/testing/selftests/Makefile | 8 ++
tools/testing/selftests/drivers/net/Makefile | 7 ++
.../testing/selftests/drivers/net/README.rst | 30 +++++
.../selftests/drivers/net/lib/py/__init__.py | 17 +++
.../selftests/drivers/net/lib/py/env.py | 41 ++++++
tools/testing/selftests/drivers/net/stats.py | 85 +++++++++++++
tools/testing/selftests/net/Makefile | 1 +
tools/testing/selftests/net/lib/Makefile | 8 ++
.../testing/selftests/net/lib/py/__init__.py | 7 ++
tools/testing/selftests/net/lib/py/consts.py | 9 ++
tools/testing/selftests/net/lib/py/ksft.py | 96 ++++++++++++++
tools/testing/selftests/net/lib/py/nsim.py | 118 ++++++++++++++++++
tools/testing/selftests/net/lib/py/utils.py | 47 +++++++
tools/testing/selftests/net/lib/py/ynl.py | 49 ++++++++
tools/testing/selftests/net/nl_netdev.py | 24 ++++
19 files changed, 610 insertions(+), 1 deletion(-)
create mode 100644 tools/testing/selftests/drivers/net/Makefile
create mode 100644 tools/testing/selftests/drivers/net/README.rst
create mode 100644 tools/testing/selftests/drivers/net/lib/py/__init__.py
create mode 100644 tools/testing/selftests/drivers/net/lib/py/env.py
create mode 100755 tools/testing/selftests/drivers/net/stats.py
create mode 100644 tools/testing/selftests/net/lib/Makefile
create mode 100644 tools/testing/selftests/net/lib/py/__init__.py
create mode 100644 tools/testing/selftests/net/lib/py/consts.py
create mode 100644 tools/testing/selftests/net/lib/py/ksft.py
create mode 100644 tools/testing/selftests/net/lib/py/nsim.py
create mode 100644 tools/testing/selftests/net/lib/py/utils.py
create mode 100644 tools/testing/selftests/net/lib/py/ynl.py
create mode 100755 tools/testing/selftests/net/nl_netdev.py
--
2.44.0
Add specification for test metadata to the KTAP v2 spec.
KTAP v1 only specifies the output format of very basic test information:
test result and test name. Any additional test information either gets
added to general diagnostic data or is not included in the output at all.
The purpose of KTAP metadata is to create a framework to include and
easily identify additional important test information in KTAP.
KTAP metadata could include any test information that is pertinent for
user interaction before or after the running of the test. For example,
the test file path or the test speed.
Since this includes a large variety of information, this specification
will recognize notable types of KTAP metadata to ensure consistent format
across test frameworks. See the full list of types in the specification.
Example of KTAP Metadata:
KTAP version 2
#:ktap_test: main
#:ktap_arch: uml
1..1
KTAP version 2
#:ktap_test: suite_1
#:ktap_subsystem: example
#:ktap_test_file: lib/test.c
1..2
ok 1 test_1
#:ktap_test: test_2
#:ktap_speed: very_slow
# test_2 has begun
#:custom_is_flaky: true
ok 2 test_2
# suite_1 has passed
ok 1 suite_1
The changes to the KTAP specification outline the format, location, and
different types of metadata.
Reviewed-by: Kees Cook <keescook(a)chromium.org>
Reviewed-by: David Gow <davidgow(a)google.com>
Signed-off-by: Rae Moar <rmoar(a)google.com>
---
Note this version is in reponse to comments made off the list asking for
more explanation on inheritance and edge cases.
Changes since v3:
- Add two metadata ktap_config and ktap_id
- Add section on metadata inheritance
- Add edge case examples
Documentation/dev-tools/ktap.rst | 248 ++++++++++++++++++++++++++++++-
1 file changed, 244 insertions(+), 4 deletions(-)
diff --git a/Documentation/dev-tools/ktap.rst b/Documentation/dev-tools/ktap.rst
index ff77f4aaa6ef..55bc43cd5aea 100644
--- a/Documentation/dev-tools/ktap.rst
+++ b/Documentation/dev-tools/ktap.rst
@@ -17,19 +17,22 @@ KTAP test results describe a series of tests (which may be nested: i.e., test
can have subtests), each of which can contain both diagnostic data -- e.g., log
lines -- and a final result. The test structure and results are
machine-readable, whereas the diagnostic data is unstructured and is there to
-aid human debugging.
+aid human debugging. Since version 2, tests can also contain metadata which
+consists of important supplemental test information and can be
+machine-readable.
+
+KTAP output is built from five different types of lines:
-KTAP output is built from four different types of lines:
- Version lines
- Plan lines
- Test case result lines
- Diagnostic lines
+- Metadata lines
In general, valid KTAP output should also form valid TAP output, but some
information, in particular nested test results, may be lost. Also note that
there is a stagnant draft specification for TAP14, KTAP diverges from this in
-a couple of places (notably the "Subtest" header), which are described where
-relevant later in this document.
+a couple of places, which are described where relevant later in this document.
Version lines
-------------
@@ -166,6 +169,237 @@ even if they do not start with a "#": this is to capture any other useful
kernel output which may help debug the test. It is nevertheless recommended
that tests always prefix any diagnostic output they have with a "#" character.
+KTAP metadata lines
+-------------------
+
+KTAP metadata lines are used to include and easily identify important
+supplemental test information in KTAP. These lines may appear similar to
+diagnostic lines. The format of metadata lines is below:
+
+.. code-block:: none
+
+ #:<prefix>_<metadata type>: <metadata value>
+
+The <prefix> indicates where to find the specification for the type of
+metadata, such as the name of a test framework or "ktap" to indicate this
+specification. The list of currently approved prefixes and where to find the
+documentation of the metadata types is below. Note any metadata type that does
+not use a prefix from the list below must use the prefix "custom".
+
+Current List of Approved Prefixes:
+
+- ``ktap``: See Types of KTAP Metadata below for the list of metadata types.
+
+The format of <metadata type> and <value> varies based on the type. See the
+individual specification. For "custom" types the <metadata type> can be any
+string excluding ":", spaces, or newline characters and the <value> can be any
+string.
+
+**Location:**
+
+The first KTAP metadata line for a test must be "#:ktap_test: <test name>",
+which acts as a header to associate metadata with the correct test. Metadata
+for the main KTAP level uses the test name "main". A test's metadata ends
+with a "ktap_test" line for a different test.
+
+For test cases, the location of the metadata is between the prior test result
+line and the current test result line. For test suites, the location of the
+metadata is between the suite's version line and test plan line. For the main
+level, the location of the metadata is between the main version line and main
+test plan line. See the example below.
+
+Note that a test case's metadata is inline with the test's result line. Whereas
+a suite's metadata is inline with the suite's version line and thus will be
+more indented than the suite's result line. Additionally, metadata for the main
+level is inline with the main version line.
+
+KTAP metadata for a test does not need to be contiguous. For example, a kernel
+warning or other diagnostic output could interrupt metadata lines. However, it
+is recommended to keep a test's metadata lines in the correct location and
+together when possible, as this improves readability.
+
+**Example of KTAP metadata:**
+
+::
+
+ KTAP version 2
+ #:ktap_test: main
+ #:ktap_arch: uml
+ 1..1
+ KTAP version 2
+ #:ktap_test: suite_1
+ #:ktap_subsystem: example
+ #:ktap_test_file: lib/test.c
+ 1..2
+ # WARNING: test_1 skipped
+ ok 1 test_1 # SKIP
+ #:ktap_test: test_2
+ #:ktap_speed: very_slow
+ # test_2 has begun
+ #:custom_is_flaky: true
+ ok 2 test_2
+ # suite_1 passed
+ ok 1 suite_1
+
+In this example, the tests are running on UML. The test suite "suite_1" is part
+of the subsystem "example" and belongs to the file "lib/test.c". It has
+two subtests, "test_1" and "test_2". The subtest "test_2" has a speed of
+"very_slow" and has been marked with a custom KTAP metadata type called
+"custom_is_flaky" with the value of "true".
+
+**Inheritance of KTAP metadata**
+
+Tests can inherit KTAP metadata. A child test inherits all the parent test's
+KTAP metadata except for directly opposing metadata. For example, if a suite
+has a property of "#:ktap_speed: slow", all child test cases are also marked as
+slow. However, if one of the test cases has metadata of "#:ktap_speed:
+very_slow" then that test case would be marked as very_slow instead and not
+slow.
+
+Note if a test case inherits metadata it does not need to appear as a line in
+the KTAP. Using the example above, not every test case would have the line
+"#:ktap_speed: slow" in their metadata.
+
+**Edge Case Examples of KTAP metadata**
+
+Here are a few edge case examples of KTAP metadata. The first example shows
+metadata in the wrong location.
+
+::
+
+ KTAP version 2
+ 1..1
+ KTAP version 2
+ #:ktap_test: suite_1
+ 1..3
+ ok 1 test_1
+ #:ktap_test: test_2
+ #:ktap_speed: very_slow
+ ok 2 test_2
+ #:ktap_duration: 1.342s
+ #:ktap_test: test_3
+ #:ktap_speed: slow
+ ok 3 test_3
+ ok 1 suite_1
+
+In this example, the metadata "#:ktap_duration: 1.342s" is in the wrong
+location. It was meant to belong to test_2 but was printed late. The location
+of this metadata is not recommended. However, it is allowed because the line is
+still below "#:ktap_test: test_2" and above any other ktap_test lines.
+
+This second example shows metadata in the correct location but without the
+proper header.
+
+::
+
+ KTAP version 2
+ 1..1
+ KTAP version 2
+ #:ktap_test: suite_1
+ 1..2
+ not ok 1 test_1
+ #:ktap_speed: very_slow
+ ok 2 test_2
+ ok 1 suite_1
+
+In this example, the metadata "#:ktap_speed: very_slow" is meant to belong to
+test_2. It is in the correct location but does not fall below a ktap_test line
+for test_2. Instead this metadata might be mistaken for belonging to suite_1
+because it does fall under the ktap_test line for suite_1. This lack of header
+is not allowed.
+
+**Types of KTAP Metadata:**
+
+This is the current list of KTAP metadata types recognized in this
+specification. Note that all of these metadata types are optional (except for
+ktap_test as the KTAP metadata header).
+
+- ``ktap_test``: Name of test (used as header of KTAP metadata). This should
+ match the test name printed in the test result line: "ok 1 [test_name]".
+
+- ``ktap_module``: Name of the module containing the test
+
+- ``ktap_subsystem``: Name of the subsystem being tested
+
+- ``ktap_start_time``: Time tests started in ISO8601 format
+
+ - Example: "#:ktap_start_time: 2024-01-09T13:09:01.990000+00:00"
+
+- ``ktap_duration``: Time taken (in seconds) to execute the test
+
+ - Example: "#:ktap_duration: 10.154s"
+
+- ``ktap_speed``: Category of how fast test runs: "normal", "slow", or
+ "very_slow"
+
+- ``ktap_test_file``: Path to source file containing the test. This metadata
+ line can be repeated if the test is spread across multiple files.
+
+ - Example: "#:ktap_test_file: lib/test.c"
+
+- ``ktap_generated_file``: Description of and path to file generated during
+ test execution. This could be a core dump, generated filesystem image, some
+ form of visual output (for graphics drivers), etc. This metadata line can be
+ repeated to attach multiple files to the test. Note use ktap_log_file or
+ ktap_error_file instead of this type if more applicable.
+
+ - Example: "#:ktap_generated_file: Core dump: /var/lib/systemd/coredump/hello.core"
+
+- ``ktap_log_file``: Path to file containing kernel log test output
+
+ - Example: "#:ktap_log_file: /sys/kernel/debugfs/kunit/example/results"
+
+- ``ktap_error_file``: Path to file containing context for test failure or
+ error. This could include the difference between optimal test output and
+ actual test output.
+
+ - Example: "#:ktap_error_file: fs/results/example.out.bad"
+
+- ``ktap_results_url``: Link to webpage describing this test run and its
+ results
+
+ - Example: "#:ktap_results_url: https://kcidb.kernelci.org/hello"
+
+- ``ktap_arch``: Architecture used during test run
+
+ - Example: "#:ktap_arch: x86_64"
+
+- ``ktap_compiler``: Compiler used during test run
+
+ - Example: "#:ktap_compiler: gcc (GCC) 10.1.1 20200507 (Red Hat 10.1.1-1)"
+
+- ``ktap_respository_url``: Link to git repository of the checked out code.
+
+ - Example: "#:ktap_respository_url: https://github.com/torvalds/linux.git"
+
+- ``ktap_git_branch``: Name of git branch of checked out code
+
+ - Example: "#:ktap_git_branch: kselftest/kunit"
+
+- ``ktap_kernel_version``: Version of Linux Kernel being used during test run
+
+ - Example: "#:ktap_kernel_version: 6.7-rc1"
+
+- ``ktap_config``: Config name and value. This does not necessarly need to be
+ restricted to Kconfig.
+
+ - Example: "#:ktap_config: CONFIG_SYSFS=y"
+
+- ``ktap_id``: Description of ID and ID value. This is an open-ended metadata
+ used for IDs, such as checkout id or test run id.
+
+ - Example: "#:ktap_id: Test run id: 14e782"
+
+- ``ktap_commit_hash``: The full git commit hash of the checked out base code.
+
+ - Example: "#:ktap_commit_hash: 064725faf8ec2e6e36d51e22d3b86d2707f0f47f"
+
+**Other Metadata Types:**
+
+There can also be KTAP metadata that is not included in the recognized list
+above. This metadata must be prefixed with the test framework, ie. "kselftest",
+or with the prefix "custom". For example, "# custom_batch: 20".
+
Unknown lines
-------------
@@ -206,6 +440,7 @@ An example of a test with two nested subtests:
KTAP version 2
1..1
KTAP version 2
+ #:ktap_test: example
1..2
ok 1 test_1
not ok 2 test_2
@@ -219,6 +454,7 @@ An example format with multiple levels of nested testing:
KTAP version 2
1..2
KTAP version 2
+ #:ktap_test: example_test_1
1..2
KTAP version 2
1..2
@@ -254,6 +490,7 @@ Example KTAP output
KTAP version 2
1..1
KTAP version 2
+ #:ktap_test: main_test
1..3
KTAP version 2
1..1
@@ -261,11 +498,14 @@ Example KTAP output
ok 1 test_1
ok 1 example_test_1
KTAP version 2
+ #:ktap_test: example_test_2
+ #:ktap_speed: slow
1..2
ok 1 test_1 # SKIP test_1 skipped
ok 2 test_2
ok 2 example_test_2
KTAP version 2
+ #:ktap_test: example_test_3
1..3
ok 1 test_1
# test_2: FAIL
base-commit: 906f02e42adfbd5ae70d328ee71656ecb602aaf5
--
2.44.0.478.gd926399ef9-goog
The commit e5ed6c922537 ("KVM: selftests: Fix a semaphore imbalance in
the dirty ring logging test") backported the fix from v6.8 to stable
v6.1. However, since the patch uses 'TEST_ASSERT_EQ()', which doesn't
exist on v6.1, the following build error is seen:
dirty_log_test.c:775:2: error: call to undeclared function
'TEST_ASSERT_EQ'; ISO C99 and later do not support implicit function
declarations [-Wimplicit-function-declaration]
TEST_ASSERT_EQ(sem_val, 0);
^
1 error generated.
Replace the macro with its equivalent, 'ASSERT_EQ()' to fix the issue.
Fixes: e5ed6c922537 ("KVM: selftests: Fix a semaphore imbalance in the dirty ring logging test")
Cc: <stable(a)vger.kernel.org>
Signed-off-by: Raghavendra Rao Ananta <rananta(a)google.com>
---
tools/testing/selftests/kvm/dirty_log_test.c | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/tools/testing/selftests/kvm/dirty_log_test.c b/tools/testing/selftests/kvm/dirty_log_test.c
index ec40a33c29fd..711b9e4d86aa 100644
--- a/tools/testing/selftests/kvm/dirty_log_test.c
+++ b/tools/testing/selftests/kvm/dirty_log_test.c
@@ -772,9 +772,9 @@ static void run_test(enum vm_guest_mode mode, void *arg)
* verification of all iterations.
*/
sem_getvalue(&sem_vcpu_stop, &sem_val);
- TEST_ASSERT_EQ(sem_val, 0);
+ ASSERT_EQ(sem_val, 0);
sem_getvalue(&sem_vcpu_cont, &sem_val);
- TEST_ASSERT_EQ(sem_val, 0);
+ ASSERT_EQ(sem_val, 0);
pthread_create(&vcpu_thread, NULL, vcpu_worker, vcpu);
base-commit: e5cd595e23c1a075359a337c0e5c3a4f2dc28dd1
--
2.44.0.478.gd926399ef9-goog
The commit e5ed6c922537 ("KVM: selftests: Fix a semaphore imbalance in
the dirty ring logging test") backported the fix from v6.8 to stable
v6.1. However, since the patch uses 'TEST_ASSERT_EQ()', which doesn't
exist on v6.1, the following build error is seen:
dirty_log_test.c:775:2: error: call to undeclared function
'TEST_ASSERT_EQ'; ISO C99 and later do not support implicit function
declarations [-Wimplicit-function-declaration]
TEST_ASSERT_EQ(sem_val, 0);
^
1 error generated.
Replace the macro with its equivalent, 'ASSERT_EQ()' to fix the issue.
Fixes: e5ed6c922537 ("KVM: selftests: Fix a semaphore imbalance in the dirty ring logging test")
Cc: <stable(a)vger.kernel.org>
Signed-off-by: Raghavendra Rao Ananta <rananta(a)google.com>
Change-Id: I52c2c28d962e482bb4f40f285229a2465ed59d7e
---
tools/testing/selftests/kvm/dirty_log_test.c | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/tools/testing/selftests/kvm/dirty_log_test.c b/tools/testing/selftests/kvm/dirty_log_test.c
index ec40a33c29fd..711b9e4d86aa 100644
--- a/tools/testing/selftests/kvm/dirty_log_test.c
+++ b/tools/testing/selftests/kvm/dirty_log_test.c
@@ -772,9 +772,9 @@ static void run_test(enum vm_guest_mode mode, void *arg)
* verification of all iterations.
*/
sem_getvalue(&sem_vcpu_stop, &sem_val);
- TEST_ASSERT_EQ(sem_val, 0);
+ ASSERT_EQ(sem_val, 0);
sem_getvalue(&sem_vcpu_cont, &sem_val);
- TEST_ASSERT_EQ(sem_val, 0);
+ ASSERT_EQ(sem_val, 0);
pthread_create(&vcpu_thread, NULL, vcpu_worker, vcpu);
base-commit: e5cd595e23c1a075359a337c0e5c3a4f2dc28dd1
--
2.44.0.478.gd926399ef9-goog
As discussed in the LKML thread [1], the asynchronous nature of cpuset
hotplug handling code is causing problem with RCU testing. With recent
changes in the way locking is being handled in the cpuset code, it is
now possible to make the cpuset hotplug code synchronous again without
major changes.
This series enables the hotplug code to call directly into cpuset hotplug
core without indirection with the exception of the special case of v1
cpuset becoming empty still being handled indirectly with workqueue.
A new simple test case was also written to test this special v1 cpuset
case. The test_cpuset_prs.sh script was also run with LOCKDEP on to
verify that there is no regression.
[1] https://lore.kernel.org/lkml/ZgYikMb5kZ7rxPp6@slm.duckdns.org/
Waiman Long (2):
cgroup/cpuset: Make cpuset hotplug processing synchronous
cgroup/cpuset: Add test_cpuset_v1_hp.sh
include/linux/cpuset.h | 3 -
kernel/cgroup/cpuset.c | 131 +++++++-----------
kernel/cpu.c | 48 -------
kernel/power/process.c | 2 -
tools/testing/selftests/cgroup/Makefile | 2 +-
.../selftests/cgroup/test_cpuset_v1_hp.sh | 40 ++++++
6 files changed, 88 insertions(+), 138 deletions(-)
create mode 100755 tools/testing/selftests/cgroup/test_cpuset_v1_hp.sh
--
2.39.3