On 4/30/2024 4:58 AM, Andrii Nakryiko wrote:
On Sun, Apr 28, 2024 at 8:15 AM Xu Kuohai xukuohai@huaweicloud.com wrote:
On 4/27/2024 4:36 AM, Andrii Nakryiko wrote:
On Tue, Apr 23, 2024 at 7:26 PM Xu Kuohai xukuohai@huaweicloud.com wrote:
On 4/24/2024 5:55 AM, Yonghong Song wrote:
On 4/20/24 1:33 AM, Xu Kuohai wrote:
On 4/20/2024 7:00 AM, Eduard Zingerman wrote: > On Thu, 2024-04-11 at 20:27 +0800, Xu Kuohai wrote: >> From: Xu Kuohai xukuohai@huawei.com >> >> With lsm return value check, the no-alu32 version test_libbpf_get_fd_by_id_opts >> is rejected by the verifier, and the log says: >> >> 0: R1=ctx() R10=fp0 >> ; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27 >> 0: (b7) r0 = 0 ; R0_w=0 >> 1: (79) r2 = *(u64 *)(r1 +0) >> func 'bpf_lsm_bpf_map' arg0 has btf_id 916 type STRUCT 'bpf_map' >> 2: R1=ctx() R2_w=trusted_ptr_bpf_map() >> ; if (map != (struct bpf_map *)&data_input) @ test_libbpf_get_fd_by_id_opts.c:29 >> 2: (18) r3 = 0xffff9742c0951a00 ; R3_w=map_ptr(map=data_input,ks=4,vs=4) >> 4: (5d) if r2 != r3 goto pc+4 ; R2_w=trusted_ptr_bpf_map() R3_w=map_ptr(map=data_input,ks=4,vs=4) >> ; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27 >> 5: (79) r0 = *(u64 *)(r1 +8) ; R0_w=scalar() R1=ctx() >> ; if (fmode & FMODE_WRITE) @ test_libbpf_get_fd_by_id_opts.c:32 >> 6: (67) r0 <<= 62 ; R0_w=scalar(smax=0x4000000000000000,umax=0xc000000000000000,smin32=0,smax32=umax32=0,var_off=(0x0; 0xc000000000000000)) >> 7: (c7) r0 s>>= 63 ; R0_w=scalar(smin=smin32=-1,smax=smax32=0) >> ; @ test_libbpf_get_fd_by_id_opts.c:0 >> 8: (57) r0 &= -13 ; R0_w=scalar(smax=0x7ffffffffffffff3,umax=0xfffffffffffffff3,smax32=0x7ffffff3,umax32=0xfffffff3,var_off=(0x0; 0xfffffffffffffff3)) >> ; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27 >> 9: (95) exit
[...]
As suggested by Eduard, this patch makes a special case for source or destination register of '&=' operation being in range [-1, 0]. Meaning that one of the '&=' operands is either: - all ones, in which case the counterpart is the result of the operation; - all zeros, in which case zero is the result of the operation. And MIN and MAX values could be derived based on above two observations. [0] https://lore.kernel.org/bpf/e62e2971301ca7f2e9eb74fc500c520285cad8f5.camel@gmail.com/ [1] https://github.com/llvm/llvm-project/blob/4523a267829c807f3fc8fab8e5e9613985a51565/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp Suggested-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index 640747b53745..30c551d39329 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -13374,6 +13374,24 @@ static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, dst_reg->u32_min_value = var32_off.value; dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
/* Special case: src_reg is known and dst_reg is in range [-1, 0] */
if (src_known &&
dst_reg->s32_min_value == -1 && dst_reg->s32_max_value == 0 &&
dst_reg->smin_value == -1 && dst_reg->smax_value == 0) {
please keep if () condition aligned across multiple lines, it's super confusing this way
OK, will update the align style
dst_reg->s32_min_value = min_t(s32, src_reg->s32_min_value, 0);
dst_reg->s32_max_value = max_t(s32, src_reg->s32_min_value, 0);
do we need to update tnum parts as well (or reset and re-derive, probably)?
btw, can't we support src being a range here? the idea is that dst_reg either all ones or all zeros. For and it means that it either stays all zero, or will be *exactly equal* to src, right? So I think the logic would be:
a) if [s32_min, s32_max] is on the same side of zero, then resulting range would be [min(s32_min, 0), max(s32_max, 0)], just like you have here
b) if [s32_min, s32_max] contains zero, then resulting range will be exactly [s32_min, s32_max]
Or did I make a mistake above?
Totally agree, the AND of any set with the range [-1,0] is equivalent to adding number 0 to the set!
Based on this observation, I've rewritten the patch as follows.
diff --git a/include/linux/tnum.h b/include/linux/tnum.h index 3c13240077b8..5e795d728b9f 100644 --- a/include/linux/tnum.h +++ b/include/linux/tnum.h @@ -52,6 +52,9 @@ struct tnum tnum_mul(struct tnum a, struct tnum b); /* Return a tnum representing numbers satisfying both @a and @b */ struct tnum tnum_intersect(struct tnum a, struct tnum b);
+/* Return a tnum representing numbers satisfying either @a or @b */ +struct tnum tnum_union(struct tnum a, struct tnum b);
- /* Return @a with all but the lowest @size bytes cleared */ struct tnum tnum_cast(struct tnum a, u8 size);
diff --git a/kernel/bpf/tnum.c b/kernel/bpf/tnum.c index 9dbc31b25e3d..9d4480a683ca 100644 --- a/kernel/bpf/tnum.c +++ b/kernel/bpf/tnum.c @@ -150,6 +150,29 @@ struct tnum tnum_intersect(struct tnum a, struct tnum b) return TNUM(v & ~mu, mu); }
+/*
- Each bit has 3 states: unkown, known 0, known 1. If using x to represent
- unknown state, the result of the union of two bits is as follows:
| x 0 1
- -----+------------
x | x x x
0 | x 0 x
1 | x x 1
- For tnum a and b, only the bits that are both known 0 or known 1 in a
- and b are known in the result of union a and b.
- */
+struct tnum tnum_union(struct tnum a, struct tnum b) +{
u64 v0, v1, mu;
mu = a.mask | b.mask; // unkown bits either in a or b
v1 = (a.value & b.value) & ~mu; // "known 1" bits in both a and b
v0 = (~a.value & ~b.value) & ~mu; // "known 0" bits in both a and b
no C++-style comments, please
OK, will fix in the formal patch.
return TNUM(v1, mu | ~(v0 | v1));
+}
I've CC'ed Edward, hopefully he can take a look as well. Please CC him on future patches touching tnum as well.
Sure
struct tnum tnum_cast(struct tnum a, u8 size) { a.value &= (1ULL << (size * 8)) - 1; { a.value &= (1ULL << (size * 8)) - 1; diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index 8f0f2e21699e..b69c89bc5cfc 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -13478,6 +13478,28 @@ static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, return; }
/* Special case: dst_reg is in range [-1, 0] */
if (dst_reg->s32_min_value == -1 && dst_reg->s32_max_value == 0) {
var32_off = tnum_union(src_reg->var_off, tnum_const(0));
dst_reg->var_off = tnum_with_subreg(dst_reg->var_off, var32_off);
dst_reg->u32_min_value = var32_off.value;
dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
can you explain the logic behing u32 min/max updates, especially that we use completely different values for min/max and it's not clear why u32_min <= u32_max invariant will always hold. Same below
We're adding 0 to the existing range, and 0 is the smallest unsigned number, so the resulted unsigned min can only get smaller, and the unsigned max will not be affected. In fact, since 0 is added to the range, var32_off.value should be 0. And since -1 is in included in dst_reg, dst_reg->u32_max_value should be -1U, the maximum unsigned integer. So we can just set u32_min to 0, and set u32_max to umax_val.
dst_reg->s32_min_value = min_t(s32, src_reg->s32_min_value, 0);
dst_reg->s32_max_value = max_t(s32, src_reg->s32_max_value, 0);
return;
}
/* Special case: src_reg is in range [-1, 0] */
if (src_reg->s32_min_value == -1 && src_reg->s32_max_value == 0) {
var32_off = tnum_union(dst_reg->var_off, tnum_const(0));
dst_reg->var_off = tnum_with_subreg(dst_reg->var_off, var32_off);
dst_reg->u32_min_value = var32_off.value;
dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
dst_reg->s32_min_value = min_t(s32, dst_reg->s32_min_value, 0);
dst_reg->s32_max_value = max_t(s32, dst_reg->s32_max_value, 0);
return;
}
/* We get our minimum from the var_off, since that's inherently * bitwise. Our maximum is the minimum of the operands' maxima. */
@@ -13508,6 +13530,26 @@ static void scalar_min_max_and(struct bpf_reg_state *dst_reg, return; }
/* Special case: dst_reg is in range [-1, 0] */
if (dst_reg->smin_value == -1 && dst_reg->smax_value == 0) {
dst_reg->var_off = tnum_union(src_reg->var_off, tnum_const(0));
dst_reg->umin_value = dst_reg->var_off.value;
dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
dst_reg->smin_value = min_t(s64, src_reg->smin_value, 0);
dst_reg->smax_value = max_t(s64, src_reg->smax_value, 0);
return;
}
/* Special case: src_reg is in range [-1, 0] */
if (src_reg->smin_value == -1 && src_reg->smax_value == 0) {
dst_reg->var_off = tnum_union(dst_reg->var_off, tnum_const(0));
dst_reg->umin_value = dst_reg->var_off.value;
dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
dst_reg->smin_value = min_t(s64, dst_reg->smin_value, 0);
dst_reg->smax_value = max_t(s64, dst_reg->smax_value, 0);
return;
}
return;
}
/* Special case: dst_reg is known and src_reg is in range [-1, 0] */
if (dst_known &&
src_reg->s32_min_value == -1 && src_reg->s32_max_value == 0 &&
src_reg->smin_value == -1 && src_reg->smax_value == 0) {
dst_reg->s32_min_value = min_t(s32, dst_reg->s32_min_value, 0);
dst_reg->s32_max_value = max_t(s32, dst_reg->s32_min_value, 0);
return;
}
/* Safe to set s32 bounds by casting u32 result into s32 when u32 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. */
[...]