Currently, a parent partition root cannot distribute all its CPUs to child partition roots with no CPUs left. However in some use cases, a management application may want to create a parent partition root as a management unit with no task associated with it and has all its CPUs distributed to various child partition roots dynamically according to their needs. Leaving a cpu in the parent partition root in such a case is now a waste.
To accommodate such use cases, a parent partition root can now have all its CPUs distributed to its child partition roots as long as: 1) it is not the top cpuset; and 2) there is no task directly associated with the parent.
Once an empty parent partition root is formed, no new task can be moved into it.
Signed-off-by: Waiman Long longman@redhat.com --- kernel/cgroup/cpuset.c | 44 +++++++++++++++++++++++++++++------------- 1 file changed, 31 insertions(+), 13 deletions(-)
diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c index 78dd6c91dcd6..ef19eb317fef 100644 --- a/kernel/cgroup/cpuset.c +++ b/kernel/cgroup/cpuset.c @@ -1117,7 +1117,7 @@ enum subparts_cmd { * cpus_allowed can be granted or an error code will be returned. * * For partcmd_disable, the cpuset is being transofrmed from a partition - * root back to a non-partition root. any CPUs in cpus_allowed that are in + * root back to a non-partition root. Any CPUs in cpus_allowed that are in * parent's subparts_cpus will be taken away from that cpumask and put back * into parent's effective_cpus. 0 should always be returned. * @@ -1172,21 +1172,31 @@ static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) return -EBUSY;
- /* - * Enabling partition root is not allowed if not all the CPUs - * can be granted from parent's effective_cpus or at least one - * CPU will be left after that. - */ - if ((cmd == partcmd_enable) && - (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || - cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) - return -EINVAL; - /* * A cpumask update cannot make parent's effective_cpus become empty. */ adding = deleting = false; if (cmd == partcmd_enable) { + bool parent_is_top_cpuset = !parent_cs(parent); + bool no_cpu_in_parent = cpumask_equal(cpuset->cpus_allowed, + parent->effective_cpus); + /* + * Enabling partition root is not allowed if not all the CPUs + * can be granted from parent's effective_cpus. If the parent + * is the top cpuset, at least one CPU must be left after that. + */ + if (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || + (parent_is_top_cpuset && no_cpu_in_parent)) + return -EINVAL; + + /* + * A non-top parent can be left with no CPU as long as there + * is no task directly associated with the parent. For such + * a parent, no new task can be moved into it. + */ + if (no_cpu_in_parent && parent->css.cgroup->nr_populated_csets) + return -EINVAL; + cpumask_copy(tmp->addmask, cpuset->cpus_allowed); adding = true; } else if (cmd == partcmd_disable) { @@ -1208,9 +1218,10 @@ static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, adding = cpumask_andnot(tmp->addmask, tmp->addmask, parent->subparts_cpus); /* - * Return error if the new effective_cpus could become empty. + * Return error if the new effective_cpus could become empty + * and there are tasks in the parent. */ - if (adding && + if (adding && parent->css.cgroup->nr_populated_csets && cpumask_equal(parent->effective_cpus, tmp->addmask)) { if (!deleting) return -EINVAL; @@ -2181,6 +2192,13 @@ static int cpuset_can_attach(struct cgroup_taskset *tset) (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) goto out_unlock;
+ /* + * On default hierarchy, task cannot be moved to a cpuset with empty + * effective cpus. + */ + if (is_in_v2_mode() && cpumask_empty(cs->effective_cpus)) + goto out_unlock; + cgroup_taskset_for_each(task, css, tset) { ret = task_can_attach(task, cs->cpus_allowed); if (ret)