We now have dedicated pages on running tests. Therefore refocus the usage page on writing tests and add content from tips page and information on other architectures.
Signed-off-by: Harinder Singh sharinder@google.com --- Documentation/dev-tools/kunit/index.rst | 2 +- Documentation/dev-tools/kunit/start.rst | 2 +- Documentation/dev-tools/kunit/usage.rst | 570 ++++++++++-------------- 3 files changed, 247 insertions(+), 327 deletions(-)
diff --git a/Documentation/dev-tools/kunit/index.rst b/Documentation/dev-tools/kunit/index.rst index c0d1fd749cd2..76c9704d6a1a 100644 --- a/Documentation/dev-tools/kunit/index.rst +++ b/Documentation/dev-tools/kunit/index.rst @@ -102,7 +102,7 @@ How do I use it? * Documentation/dev-tools/kunit/architecture.rst - KUnit architecture. * Documentation/dev-tools/kunit/run_wrapper.rst - run kunit_tool. * Documentation/dev-tools/kunit/run_manual.rst - run tests without kunit_tool. -* Documentation/dev-tools/kunit/usage.rst - KUnit features. +* Documentation/dev-tools/kunit/usage.rst - write tests. * Documentation/dev-tools/kunit/tips.rst - best practices with examples. * Documentation/dev-tools/kunit/api/index.rst - KUnit APIs diff --git a/Documentation/dev-tools/kunit/start.rst b/Documentation/dev-tools/kunit/start.rst index af13f443c976..a858ab009944 100644 --- a/Documentation/dev-tools/kunit/start.rst +++ b/Documentation/dev-tools/kunit/start.rst @@ -243,7 +243,7 @@ Next Steps * Documentation/dev-tools/kunit/architecture.rst - KUnit architecture. * Documentation/dev-tools/kunit/run_wrapper.rst - run kunit_tool. * Documentation/dev-tools/kunit/run_manual.rst - run tests without kunit_tool. -* Documentation/dev-tools/kunit/usage.rst - KUnit features. +* Documentation/dev-tools/kunit/usage.rst - write tests. * Documentation/dev-tools/kunit/tips.rst - best practices with examples. * Documentation/dev-tools/kunit/api/index.rst - KUnit APIs diff --git a/Documentation/dev-tools/kunit/usage.rst b/Documentation/dev-tools/kunit/usage.rst index 63f1bb89ebf5..b321877797f0 100644 --- a/Documentation/dev-tools/kunit/usage.rst +++ b/Documentation/dev-tools/kunit/usage.rst @@ -1,57 +1,13 @@ .. SPDX-License-Identifier: GPL-2.0
-=========== -Using KUnit -=========== - -The purpose of this document is to describe what KUnit is, how it works, how it -is intended to be used, and all the concepts and terminology that are needed to -understand it. This guide assumes a working knowledge of the Linux kernel and -some basic knowledge of testing. - -For a high level introduction to KUnit, including setting up KUnit for your -project, see Documentation/dev-tools/kunit/start.rst. - -Organization of this document -============================= - -This document is organized into two main sections: Testing and Common Patterns. -The first covers what unit tests are and how to use KUnit to write them. The -second covers common testing patterns, e.g. how to isolate code and make it -possible to unit test code that was otherwise un-unit-testable. - -Testing -======= - -What is KUnit? --------------- - -"K" is short for "kernel" so "KUnit" is the "(Linux) Kernel Unit Testing -Framework." KUnit is intended first and foremost for writing unit tests; it is -general enough that it can be used to write integration tests; however, this is -a secondary goal. KUnit has no ambition of being the only testing framework for -the kernel; for example, it does not intend to be an end-to-end testing -framework. - -What is Unit Testing? ---------------------- - -A `unit test https://martinfowler.com/bliki/UnitTest.html`_ is a test that -tests code at the smallest possible scope, a *unit* of code. In the C -programming language that's a function. - -Unit tests should be written for all the publicly exposed functions in a -compilation unit; so that is all the functions that are exported in either a -*class* (defined below) or all functions which are **not** static. - Writing Tests -------------- +=============
Test Cases -~~~~~~~~~~ +----------
The fundamental unit in KUnit is the test case. A test case is a function with -the signature ``void (*)(struct kunit *test)``. It calls a function to be tested +the signature ``void (*)(struct kunit *test)``. It calls the function under test and then sets *expectations* for what should happen. For example:
.. code-block:: c @@ -65,18 +21,19 @@ and then sets *expectations* for what should happen. For example: KUNIT_FAIL(test, "This test never passes."); }
-In the above example ``example_test_success`` always passes because it does -nothing; no expectations are set, so all expectations pass. On the other hand -``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, which is -a special expectation that logs a message and causes the test case to fail. +In the above example, ``example_test_success`` always passes because it does +nothing; no expectations are set, and therefore all expectations pass. On the +other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, +which is a special expectation that logs a message and causes the test case to +fail.
Expectations ~~~~~~~~~~~~ -An *expectation* is a way to specify that you expect a piece of code to do -something in a test. An expectation is called like a function. A test is made -by setting expectations about the behavior of a piece of code under test; when -one or more of the expectations fail, the test case fails and information about -the failure is logged. For example: +An *expectation* specifies that we expect a piece of code to do something in a +test. An expectation is called like a function. A test is made by setting +expectations about the behavior of a piece of code under test. When one or more +expectations fail, the test case fails and information about the failure is +logged. For example:
.. code-block:: c
@@ -86,29 +43,28 @@ the failure is logged. For example: KUNIT_EXPECT_EQ(test, 2, add(1, 1)); }
-In the above example ``add_test_basic`` makes a number of assertions about the -behavior of a function called ``add``; the first parameter is always of type -``struct kunit *``, which contains information about the current test context; -the second parameter, in this case, is what the value is expected to be; the +In the above example, ``add_test_basic`` makes a number of assertions about the +behavior of a function called ``add``. The first parameter is always of type +``struct kunit *``, which contains information about the current test context. +The second parameter, in this case, is what the value is expected to be. The last value is what the value actually is. If ``add`` passes all of these expectations, the test case, ``add_test_basic`` will pass; if any one of these expectations fails, the test case will fail.
-It is important to understand that a test case *fails* when any expectation is -violated; however, the test will continue running, potentially trying other -expectations until the test case ends or is otherwise terminated. This is as -opposed to *assertions* which are discussed later. +A test case *fails* when any expectation is violated; however, the test will +continue to run, and try other expectations until the test case ends or is +otherwise terminated. This is as opposed to *assertions* which are discussed +later.
-To learn about more expectations supported by KUnit, see -Documentation/dev-tools/kunit/api/test.rst. +To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst.
.. note:: - A single test case should be pretty short, pretty easy to understand, - focused on a single behavior. + A single test case should be short, easy to understand, and focused on a + single behavior.
-For example, if we wanted to properly test the add function above, we would -create additional tests cases which would each test a different property that an -add function should have like this: +For example, if we want to rigorously test the ``add`` function above, create +additional tests cases which would test each property that an ``add`` function +should have as shown below:
.. code-block:: c
@@ -134,56 +90,43 @@ add function should have like this: KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1)); }
-Notice how it is immediately obvious what all the properties that we are testing -for are. - Assertions ~~~~~~~~~~
-KUnit also has the concept of an *assertion*. An assertion is just like an -expectation except the assertion immediately terminates the test case if it is -not satisfied. - -For example: +An assertion is like an expectation, except that the assertion immediately +terminates the test case if the condition is not satisfied. For example:
.. code-block:: c
- static void mock_test_do_expect_default_return(struct kunit *test) + static void test_sort(struct kunit *test) { - struct mock_test_context *ctx = test->priv; - struct mock *mock = ctx->mock; - int param0 = 5, param1 = -5; - const char *two_param_types[] = {"int", "int"}; - const void *two_params[] = {¶m0, ¶m1}; - const void *ret; - - ret = mock->do_expect(mock, - "test_printk", test_printk, - two_param_types, two_params, - ARRAY_SIZE(two_params)); - KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ret); - KUNIT_EXPECT_EQ(test, -4, *((int *) ret)); + int *a, i, r = 1; + a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL); + KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a); + for (i = 0; i < TEST_LEN; i++) { + r = (r * 725861) % 6599; + a[i] = r; + } + sort(a, TEST_LEN, sizeof(*a), cmpint, NULL); + for (i = 0; i < TEST_LEN-1; i++) + KUNIT_EXPECT_LE(test, a[i], a[i + 1]); }
-In this example, the method under test should return a pointer to a value, so -if the pointer returned by the method is null or an errno, we don't want to -bother continuing the test since the following expectation could crash the test -case. `ASSERT_NOT_ERR_OR_NULL(...)` allows us to bail out of the test case if -the appropriate conditions have not been satisfied to complete the test. +In this example, the method under test should return pointer to a value. If the +pointer returns null or an errno, we want to stop the test since the following +expectation could crash the test case. `ASSERT_NOT_ERR_OR_NULL(...)` allows us +to bail out of the test case if the appropriate conditions are not satisfied to +complete the test.
Test Suites ~~~~~~~~~~~
-Now obviously one unit test isn't very helpful; the power comes from having -many test cases covering all of a unit's behaviors. Consequently it is common -to have many *similar* tests; in order to reduce duplication in these closely -related tests most unit testing frameworks - including KUnit - provide the -concept of a *test suite*. A *test suite* is just a collection of test cases -for a unit of code with a set up function that gets invoked before every test -case and then a tear down function that gets invoked after every test case -completes. - -Example: +We need many test cases covering all the unit's behaviors. It is common to have +many similar tests. In order to reduce duplication in these closely related +tests, most unit testing frameworks (including KUnit) provide the concept of a +*test suite*. A test suite is a collection of test cases for a unit of code +with a setup function that gets invoked before every test case and then a tear +down function that gets invoked after every test case completes. For example:
.. code-block:: c
@@ -202,23 +145,48 @@ Example: }; kunit_test_suite(example_test_suite);
-In the above example the test suite, ``example_test_suite``, would run the test -cases ``example_test_foo``, ``example_test_bar``, and ``example_test_baz``; -each would have ``example_test_init`` called immediately before it and would -have ``example_test_exit`` called immediately after it. +In the above example, the test suite ``example_test_suite`` would run the test +cases ``example_test_foo``, ``example_test_bar``, and ``example_test_baz``. Each +would have ``example_test_init`` called immediately before it and +``example_test_exit`` called immediately after it. ``kunit_test_suite(example_test_suite)`` registers the test suite with the KUnit test framework.
.. note:: - A test case will only be run if it is associated with a test suite. + A test case will only run if it is associated with a test suite.
-``kunit_test_suite(...)`` is a macro which tells the linker to put the specified -test suite in a special linker section so that it can be run by KUnit either -after late_init, or when the test module is loaded (depending on whether the -test was built in or not). +``kunit_test_suite(...)`` is a macro which tells the linker to put the +specified test suite in a special linker section so that it can be run by KUnit +either after ``late_init``, or when the test module is loaded (if the test was +built as a module).
-For more information on these types of things see the -Documentation/dev-tools/kunit/api/test.rst. +For more information, see Documentation/dev-tools/kunit/api/test.rst. + +Writing Tests For Other Architectures +------------------------------------- + +Always prefer tests that run on UML to tests that only run under a particular +architecture. In addition, prefer tests that run under QEMU or another easy +(and monetarily free) to obtain software environment to a specific piece of +hardware. + +Nevertheless, there are still valid reasons to write an architecture or +hardware specific test. For example, we might want to test code that really +belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does +not depend on physical hardware. Some of our test cases may not need hardware, +only few tests actually require the hardware to test it. When hardware is not +available, instead of disabling tests, we can skip them. + +Now that we have narrowed down exactly what bits are hardware specific, the +actual procedure for writing and running the tests is same as writing normal +KUnit tests. + +.. important:: + We may have to reset hardware state. If this is not possible, we may only + be able to run one test case per invocation. + +.. TODO(brendanhiggins@google.com): Add an actual example of an architecture- + dependent KUnit test.
Common Patterns =============== @@ -226,43 +194,39 @@ Common Patterns Isolating Behavior ------------------
-The most important aspect of unit testing that other forms of testing do not -provide is the ability to limit the amount of code under test to a single unit. -In practice, this is only possible by being able to control what code gets run -when the unit under test calls a function and this is usually accomplished -through some sort of indirection where a function is exposed as part of an API -such that the definition of that function can be changed without affecting the -rest of the code base. In the kernel this primarily comes from two constructs, -classes, structs that contain function pointers that are provided by the -implementer, and architecture-specific functions which have definitions selected -at compile time. +Unit testing limits the amount of code under test to a single unit. It controls +what code gets run when the unit under test calls a function. Where a function +is exposed as part of an API such that the definition of that function can be +changed without affecting the rest of the code base. In the kernel, this comes +from two constructs: classes, structs. that contain function pointers provided +by the implementer and architecture specific functions which have definitions +selected at compile time.
Classes ~~~~~~~
Classes are not a construct that is built into the C programming language; -however, it is an easily derived concept. Accordingly, pretty much every project -that does not use a standardized object oriented library (like GNOME's GObject) -has their own slightly different way of doing object oriented programming; the -Linux kernel is no exception. +however, it is an easily derived concept. Accordingly, in most cases, every +project that does not use a standardized object oriented library (like GNOME's +GObject) has their own slightly different way of doing object oriented +programming; the Linux kernel is no exception.
The central concept in kernel object oriented programming is the class. In the kernel, a *class* is a struct that contains function pointers. This creates a contract between *implementers* and *users* since it forces them to use the -same function signature without having to call the function directly. In order -for it to truly be a class, the function pointers must specify that a pointer -to the class, known as a *class handle*, be one of the parameters; this makes -it possible for the member functions (also known as *methods*) to have access -to member variables (more commonly known as *fields*) allowing the same -implementation to have multiple *instances*. - -Typically a class can be *overridden* by *child classes* by embedding the -*parent class* in the child class. Then when a method provided by the child -class is called, the child implementation knows that the pointer passed to it is -of a parent contained within the child; because of this, the child can compute -the pointer to itself because the pointer to the parent is always a fixed offset -from the pointer to the child; this offset is the offset of the parent contained -in the child struct. For example: +same function signature without having to call the function directly. To be a +class, the function pointers must specify that a pointer to the class, known as +a *class handle*, be one of the parameters. Thus the member functions (also +known as *methods*) have access to member variables (also known as *fields*) +allowing the same implementation to have multiple *instances*. + +A class can be *overridden* by *child classes* by embedding the *parent class* +in the child class. Then when the child class *method* is called, the child +implementation knows that the pointer passed to it is of a parent contained +within the child. Thus, the child can compute the pointer to itself because the +pointer to the parent is always a fixed offset from the pointer to the child. +This offset is the offset of the parent contained in the child struct. For +example:
.. code-block:: c
@@ -290,8 +254,8 @@ in the child struct. For example: self->width = width; }
-In this example (as in most kernel code) the operation of computing the pointer -to the child from the pointer to the parent is done by ``container_of``. +In this example, computing the pointer to the child from the pointer to the +parent is done by ``container_of``.
Faking Classes ~~~~~~~~~~~~~~ @@ -300,14 +264,11 @@ In order to unit test a piece of code that calls a method in a class, the behavior of the method must be controllable, otherwise the test ceases to be a unit test and becomes an integration test.
-A fake just provides an implementation of a piece of code that is different than -what runs in a production instance, but behaves identically from the standpoint -of the callers; this is usually done to replace a dependency that is hard to -deal with, or is slow. - -A good example for this might be implementing a fake EEPROM that just stores the -"contents" in an internal buffer. For example, let's assume we have a class that -represents an EEPROM: +A fake class implements a piece of code that is different than what runs in a +production instance, but behaves identical from the standpoint of the callers. +This is done to replace a dependency that is hard to deal with, or is slow. For +example, implementing a fake EEPROM that stores the "contents" in an +internal buffer. Assume we have a class that represents an EEPROM:
.. code-block:: c
@@ -316,7 +277,7 @@ represents an EEPROM: ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count); };
-And we want to test some code that buffers writes to the EEPROM: +We want to test code that buffers writes to the EEPROM:
.. code-block:: c
@@ -329,7 +290,7 @@ And we want to test some code that buffers writes to the EEPROM: struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom); void destroy_eeprom_buffer(struct eeprom *eeprom);
-We can easily test this code by *faking out* the underlying EEPROM: +We can test this code by *faking out* the underlying EEPROM:
.. code-block:: c
@@ -456,14 +417,14 @@ We can now use it to test ``struct eeprom_buffer``: destroy_eeprom_buffer(ctx->eeprom_buffer); }
-Testing against multiple inputs +Testing Against Multiple Inputs -------------------------------
-Testing just a few inputs might not be enough to have confidence that the code -works correctly, e.g. for a hash function. +Testing just a few inputs is not enough to ensure that the code works correctly, +for example: testing a hash function.
-In such cases, it can be helpful to have a helper macro or function, e.g. this -fictitious example for ``sha1sum(1)`` +We can write a helper macro or function. The function is called for each input. +For example, to test ``sha1sum(1)``, we can write:
.. code-block:: c
@@ -475,16 +436,15 @@ fictitious example for ``sha1sum(1)`` TEST_SHA1("hello world", "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed"); TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169");
+Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more +detailed error and make the assertions clearer within the helper macros.
-Note the use of ``KUNIT_EXPECT_STREQ_MSG`` to give more context when it fails -and make it easier to track down. (Yes, in this example, ``want`` is likely -going to be unique enough on its own). +The ``_MSG`` variants are useful when the same expectation is called multiple +times (in a loop or helper function) and thus the line number is not enough to +identify what failed, as shown below.
-The ``_MSG`` variants are even more useful when the same expectation is called -multiple times (in a loop or helper function) and thus the line number isn't -enough to identify what failed, like below. - -In some cases, it can be helpful to write a *table-driven test* instead, e.g. +In complicated cases, we recommend using a *table-driven test* compared to the +helper macro variation, for example:
.. code-block:: c
@@ -513,17 +473,18 @@ In some cases, it can be helpful to write a *table-driven test* instead, e.g. }
-There's more boilerplate involved, but it can: +There is more boilerplate code involved, but it can: + +* be more readable when there are multiple inputs/outputs (due to field names).
-* be more readable when there are multiple inputs/outputs thanks to field names, + * For example, see ``fs/ext4/inode-test.c``.
- * E.g. see ``fs/ext4/inode-test.c`` for an example of both. -* reduce duplication if test cases can be shared across multiple tests. +* reduce duplication if test cases are shared across multiple tests.
- * E.g. if we wanted to also test ``sha256sum``, we could add a ``sha256`` + * For example: if we want to test ``sha256sum``, we could add a ``sha256`` field and reuse ``cases``.
-* be converted to a "parameterized test", see below. +* be converted to a "parameterized test".
Parameterized Testing ~~~~~~~~~~~~~~~~~~~~~ @@ -531,7 +492,7 @@ Parameterized Testing The table-driven testing pattern is common enough that KUnit has special support for it.
-Reusing the same ``cases`` array from above, we can write the test as a +By reusing the same ``cases`` array from above, we can write the test as a "parameterized test" with the following.
.. code-block:: c @@ -582,193 +543,152 @@ Reusing the same ``cases`` array from above, we can write the test as a
.. _kunit-on-non-uml:
-KUnit on non-UML architectures -============================== - -By default KUnit uses UML as a way to provide dependencies for code under test. -Under most circumstances KUnit's usage of UML should be treated as an -implementation detail of how KUnit works under the hood. Nevertheless, there -are instances where being able to run architecture-specific code or test -against real hardware is desirable. For these reasons KUnit supports running on -other architectures. - -Running existing KUnit tests on non-UML architectures ------------------------------------------------------ +Exiting Early on Failed Expectations +------------------------------------
-There are some special considerations when running existing KUnit tests on -non-UML architectures: +We can use ``KUNIT_EXPECT_EQ`` to mark the test as failed and continue +execution. In some cases, it is unsafe to continue. We can use the +``KUNIT_ASSERT`` variant to exit on failure.
-* Hardware may not be deterministic, so a test that always passes or fails - when run under UML may not always do so on real hardware. -* Hardware and VM environments may not be hermetic. KUnit tries its best to - provide a hermetic environment to run tests; however, it cannot manage state - that it doesn't know about outside of the kernel. Consequently, tests that - may be hermetic on UML may not be hermetic on other architectures. -* Some features and tooling may not be supported outside of UML. -* Hardware and VMs are slower than UML. +.. code-block:: c
-None of these are reasons not to run your KUnit tests on real hardware; they are -only things to be aware of when doing so. + void example_test_user_alloc_function(struct kunit *test) + { + void *object = alloc_some_object_for_me();
-Currently, the KUnit Wrapper (``tools/testing/kunit/kunit.py``) (aka -kunit_tool) only fully supports running tests inside of UML and QEMU; however, -this is only due to our own time limitations as humans working on KUnit. It is -entirely possible to support other emulators and even actual hardware, but for -now QEMU and UML is what is fully supported within the KUnit Wrapper. Again, to -be clear, this is just the Wrapper. The actualy KUnit tests and the KUnit -library they are written in is fully architecture agnostic and can be used in -virtually any setup, you just won't have the benefit of typing a single command -out of the box and having everything magically work perfectly. + /* Make sure we got a valid pointer back. */ + KUNIT_ASSERT_NOT_ERR_OR_NULL(test, object); + do_something_with_object(object); + }
-Again, all core KUnit framework features are fully supported on all -architectures, and using them is straightforward: Most popular architectures -are supported directly in the KUnit Wrapper via QEMU. Currently, supported -architectures on QEMU include: +Allocating Memory +-----------------
-* i386 -* x86_64 -* arm -* arm64 -* alpha -* powerpc -* riscv -* s390 -* sparc +We can use ``kzalloc``, you should prefer ``kunit_kzalloc`` and KUnit will +ensure that the memory is freed once the test completes.
-In order to run KUnit tests on one of these architectures via QEMU with the -KUnit wrapper, all you need to do is specify the flags ``--arch`` and -``--cross_compile`` when invoking the KUnit Wrapper. For example, we could run -the default KUnit tests on ARM in the following manner (assuming we have an ARM -toolchain installed): +This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit +early from a test without having to worry about remembering to call ``kfree``. +For example:
-.. code-block:: bash +.. code-block:: c
- tools/testing/kunit/kunit.py run --timeout=60 --jobs=12 --arch=arm --cross_compile=arm-linux-gnueabihf- + void example_test_allocation(struct kunit *test) + { + char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL); + /* Ensure allocation succeeded. */ + KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer);
-Alternatively, if you want to run your tests on real hardware or in some other -emulation environment, all you need to do is to take your kunitconfig, your -Kconfig options for the tests you would like to run, and merge them into -whatever config your are using for your platform. That's it! + KUNIT_ASSERT_STREQ(test, buffer, ""); + }
-For example, let's say you have the following kunitconfig:
-.. code-block:: none +Testing Static Functions +------------------------
- CONFIG_KUNIT=y - CONFIG_KUNIT_EXAMPLE_TEST=y +If we do not want to expose functions or variables for testing, one option is to +conditionally ``#include`` the test file at the end of your .c file. For +example:
-If you wanted to run this test on an x86 VM, you might add the following config -options to your ``.config``: +.. code-block:: c
-.. code-block:: none + /* In my_file.c */
- CONFIG_KUNIT=y - CONFIG_KUNIT_EXAMPLE_TEST=y - CONFIG_SERIAL_8250=y - CONFIG_SERIAL_8250_CONSOLE=y + static int do_interesting_thing();
-All these new options do is enable support for a common serial console needed -for logging. + #ifdef CONFIG_MY_KUNIT_TEST + #include "my_kunit_test.c" + #endif
-Next, you could build a kernel with these tests as follows: +Injecting Test-Only Code +------------------------
+Similar to as shown above, we can add test-specific logic. For example:
-.. code-block:: bash +.. code-block:: c
- make ARCH=x86 olddefconfig - make ARCH=x86 + /* In my_file.h */
-Once you have built a kernel, you could run it on QEMU as follows: + #ifdef CONFIG_MY_KUNIT_TEST + /* Defined in my_kunit_test.c */ + void test_only_hook(void); + #else + void test_only_hook(void) { } + #endif
-.. code-block:: bash +This test-only code can be made more useful by accessing the current ``kunit_test`` +as shown in next section: *Accessing The Current Test*.
- qemu-system-x86_64 -enable-kvm \ - -m 1024 \ - -kernel arch/x86_64/boot/bzImage \ - -append 'console=ttyS0' \ - --nographic +Accessing The Current Test +--------------------------
-Interspersed in the kernel logs you might see the following: +In some cases, we need to call test-only code from outside the test file. +For example, see example in section *Injecting Test-Only Code* or if +we are providing a fake implementation of an ops struct. Using +``kunit_test`` field in ``task_struct``, we can access it via +``current->kunit_test``.
-.. code-block:: none +Below example includes how to implement "mocking":
- TAP version 14 - # Subtest: example - 1..1 - # example_simple_test: initializing - ok 1 - example_simple_test - ok 1 - example +.. code-block:: c
-Congratulations, you just ran a KUnit test on the x86 architecture! + #include <linux/sched.h> /* for current */
-In a similar manner, kunit and kunit tests can also be built as modules, -so if you wanted to run tests in this way you might add the following config -options to your ``.config``: + struct test_data { + int foo_result; + int want_foo_called_with; + };
-.. code-block:: none + static int fake_foo(int arg) + { + struct kunit *test = current->kunit_test; + struct test_data *test_data = test->priv;
- CONFIG_KUNIT=m - CONFIG_KUNIT_EXAMPLE_TEST=m + KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg); + return test_data->foo_result; + }
-Once the kernel is built and installed, a simple + static void example_simple_test(struct kunit *test) + { + /* Assume priv is allocated in the suite's .init */ + struct test_data *test_data = test->priv;
-.. code-block:: bash + test_data->foo_result = 42; + test_data->want_foo_called_with = 1;
- modprobe example-test + /* In a real test, we'd probably pass a pointer to fake_foo somewhere + * like an ops struct, etc. instead of calling it directly. */ + KUNIT_EXPECT_EQ(test, fake_foo(1), 42); + }
-...will run the tests.
-.. note:: - Note that you should make sure your test depends on ``KUNIT=y`` in Kconfig - if the test does not support module build. Otherwise, it will trigger - compile errors if ``CONFIG_KUNIT`` is ``m``. +Note: here we are able to get away with using ``test->priv``, but if we want +something more flexible we could use a named ``kunit_resource``, see +Documentation/dev-tools/kunit/api/test.rst.
-Writing new tests for other architectures ------------------------------------------ +Failing The Current Test +------------------------
-The first thing you must do is ask yourself whether it is necessary to write a -KUnit test for a specific architecture, and then whether it is necessary to -write that test for a particular piece of hardware. In general, writing a test -that depends on having access to a particular piece of hardware or software (not -included in the Linux source repo) should be avoided at all costs. +If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)`` +which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``. +For example, we have an option to enable some extra debug checks on some data +structures as shown below:
-Even if you only ever plan on running your KUnit test on your hardware -configuration, other people may want to run your tests and may not have access -to your hardware. If you write your test to run on UML, then anyone can run your -tests without knowing anything about your particular setup, and you can still -run your tests on your hardware setup just by compiling for your architecture. +.. code-block:: c
-.. important:: - Always prefer tests that run on UML to tests that only run under a particular - architecture, and always prefer tests that run under QEMU or another easy - (and monetarily free) to obtain software environment to a specific piece of - hardware. - -Nevertheless, there are still valid reasons to write an architecture or hardware -specific test: for example, you might want to test some code that really belongs -in ``arch/some-arch/*``. Even so, try your best to write the test so that it -does not depend on physical hardware: if some of your test cases don't need the -hardware, only require the hardware for tests that actually need it. - -Now that you have narrowed down exactly what bits are hardware specific, the -actual procedure for writing and running the tests is pretty much the same as -writing normal KUnit tests. One special caveat is that you have to reset -hardware state in between test cases; if this is not possible, you may only be -able to run one test case per invocation. + #include <kunit/test-bug.h>
-.. TODO(brendanhiggins@google.com): Add an actual example of an architecture- - dependent KUnit test. + #ifdef CONFIG_EXTRA_DEBUG_CHECKS + static void validate_my_data(struct data *data) + { + if (is_valid(data)) + return;
-KUnit debugfs representation -============================ -When kunit test suites are initialized, they create an associated directory -in ``/sys/kernel/debug/kunit/<test-suite>``. The directory contains one file + kunit_fail_current_test("data %p is invalid", data);
-- results: "cat results" displays results of each test case and the results - of the entire suite for the last test run. + /* Normal, non-KUnit, error reporting code here. */ + } + #else + static void my_debug_function(void) { } + #endif
-The debugfs representation is primarily of use when kunit test suites are -run in a native environment, either as modules or builtin. Having a way -to display results like this is valuable as otherwise results can be -intermixed with other events in dmesg output. The maximum size of each -results file is KUNIT_LOG_SIZE bytes (defined in ``include/kunit/test.h``).