On Tue, 12 Jul 2022 at 17:03, Benjamin Tissoires benjamin.tissoires@redhat.com wrote:
When a kfunc is not returning a pointer to a struct but to a plain type, we can consider it is a valid allocated memory assuming that:
- one of the arguments is either called rdonly_buf_size or rdwr_buf_size
- and this argument is a const from the caller point of view
We can then use this parameter as the size of the allocated memory.
The memory is either read-only or read-write based on the name of the size parameter.
Signed-off-by: Benjamin Tissoires benjamin.tissoires@redhat.com
changes in v6:
- code review from Kartikeya:
- remove comment change that had no reasons to be
- remove handling of PTR_TO_MEM with kfunc releases
- introduce struct bpf_kfunc_arg_meta
- do rdonly/rdwr_buf_size check in btf_check_kfunc_arg_match
- reverted most of the changes in verifier.c
- make sure kfunc acquire is using a struct pointer, not just a plain pointer
- also forward ref_obj_id to PTR_TO_MEM in kfunc to not use after free the allocated memory
changes in v5:
- updated PTR_TO_MEM comment in btf.c to match upstream
- make it read-only or read-write based on the name of size
new in v4
include/linux/bpf.h | 10 ++++++- include/linux/btf.h | 12 ++++++++ kernel/bpf/btf.c | 67 ++++++++++++++++++++++++++++++++++++++++--- kernel/bpf/verifier.c | 49 +++++++++++++++++++++++-------- 4 files changed, 121 insertions(+), 17 deletions(-)
diff --git a/include/linux/bpf.h b/include/linux/bpf.h index 2b21f2a3452f..5b8eadb6e7bc 100644 --- a/include/linux/bpf.h +++ b/include/linux/bpf.h @@ -1916,12 +1916,20 @@ int btf_distill_func_proto(struct bpf_verifier_log *log, const char *func_name, struct btf_func_model *m);
+struct bpf_kfunc_arg_meta {
u64 r0_size;
bool r0_rdonly;
int ref_obj_id;
bool multiple_ref_obj_id;
+};
struct bpf_reg_state; int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, struct bpf_reg_state *regs); int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, const struct btf *btf, u32 func_id,
struct bpf_reg_state *regs);
struct bpf_reg_state *regs,
struct bpf_kfunc_arg_meta *meta);
int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, struct bpf_reg_state *reg); int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, diff --git a/include/linux/btf.h b/include/linux/btf.h index 1bfed7fa0428..31da4273c2ec 100644 --- a/include/linux/btf.h +++ b/include/linux/btf.h @@ -420,4 +420,16 @@ static inline int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dt } #endif
+static inline bool btf_type_is_struct_ptr(struct btf *btf, const struct btf_type *t) +{
/* t comes in already as a pointer */
t = btf_type_by_id(btf, t->type);
/* allow const */
if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
t = btf_type_by_id(btf, t->type);
Any specific reason to not allow any other modifiers apart from const? volatile, restrict, typedef..? If not, just use btf_type_skip_modifiers instead.
return btf_type_is_struct(t);
+}
#endif diff --git a/kernel/bpf/btf.c b/kernel/bpf/btf.c index 4423045b8ff3..552d7bc05a0c 100644 --- a/kernel/bpf/btf.c +++ b/kernel/bpf/btf.c @@ -6168,10 +6168,36 @@ static bool is_kfunc_arg_mem_size(const struct btf *btf, return true; }
+static bool btf_is_kfunc_arg_mem_size(const struct btf *btf,
const struct btf_param *arg,
const struct bpf_reg_state *reg,
const char *name)
It would be nicer if we could reuse some code from is_kfunc_arg_mem_size, the only difference is matching suffix vs full string. But don't feel too strongly about it.
+{
int len, target_len = strlen(name);
const struct btf_type *t;
const char *param_name;
t = btf_type_skip_modifiers(btf, arg->type, NULL);
if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
return false;
param_name = btf_name_by_offset(btf, arg->name_off);
if (str_is_empty(param_name))
return false;
len = strlen(param_name);
if (len != target_len)
return false;
if (strncmp(param_name, name, target_len))
return false;
return true;
+}
static int btf_check_func_arg_match(struct bpf_verifier_env *env, const struct btf *btf, u32 func_id, struct bpf_reg_state *regs,
bool ptr_to_mem_ok)
bool ptr_to_mem_ok,
struct bpf_kfunc_arg_meta *kfunc_meta)
{ enum bpf_prog_type prog_type = resolve_prog_type(env->prog); struct bpf_verifier_log *log = &env->log; @@ -6225,6 +6251,30 @@ static int btf_check_func_arg_match(struct bpf_verifier_env *env,
t = btf_type_skip_modifiers(btf, args[i].type, NULL); if (btf_type_is_scalar(t)) {
if (is_kfunc && kfunc_meta) {
bool is_buf_size = false;
/* check for any const scalar parameter of name "rdonly_buf_size"
* or "rdwr_buf_size"
*/
if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
"rdonly_buf_size")) {
kfunc_meta->r0_rdonly = true;
is_buf_size = true;
} else if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
"rdwr_buf_size"))
is_buf_size = true;
if (is_buf_size) {
if (kfunc_meta->r0_size) {
bpf_log(log, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
return -EINVAL;
}
kfunc_meta->r0_size = reg->var_off.value;
As Yonghong pointed out, you need to ensure the register holds a constant value, by using tnum_is_const(reg->var_off), and giving an error otherwise, because we need a constant size to be set for R0.
}
}
if (reg->type == SCALAR_VALUE) continue; bpf_log(log, "R%d is not a scalar\n", regno);
@@ -6246,6 +6296,14 @@ static int btf_check_func_arg_match(struct bpf_verifier_env *env, if (ret < 0) return ret;
/* kptr_get is only valid for kfunc */
Invalid comment
if (kfunc_meta && reg->ref_obj_id) {
/* check for any one ref_obj_id to keep track of memory */
if (kfunc_meta->ref_obj_id)
kfunc_meta->multiple_ref_obj_id = true;
Why not just return the error here itself? And then no need to keep the multiple_ref_obj_id member. When you return the error here, you can move a similar check in the if (reg->type == PTR_TO_BTF_ID) block to this place so that we don't do it twice.
kfunc_meta->ref_obj_id = reg->ref_obj_id;
}
/* kptr_get is only true for kfunc */ if (i == 0 && kptr_get) { struct bpf_map_value_off_desc *off_desc;
@@ -6441,7 +6499,7 @@ int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, return -EINVAL;
is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL); /* Compiler optimizations can remove arguments from static functions * or mismatched type can be passed into a global function.
@@ -6454,9 +6512,10 @@ int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, const struct btf *btf, u32 func_id,
struct bpf_reg_state *regs)
struct bpf_reg_state *regs,
struct bpf_kfunc_arg_meta *meta)
{
return btf_check_func_arg_match(env, btf, func_id, regs, true);
return btf_check_func_arg_match(env, btf, func_id, regs, true, meta);
}
/* Convert BTF of a function into bpf_reg_state if possible diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index 3adcc0d123af..77556132db15 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -7561,6 +7561,7 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, { const struct btf_type *t, *func, *func_proto, *ptr_type; struct bpf_reg_state *regs = cur_regs(env);
struct bpf_kfunc_arg_meta meta = { 0 }; const char *func_name, *ptr_type_name; u32 i, nargs, func_id, ptr_type_id; int err, insn_idx = *insn_idx_p;
@@ -7592,7 +7593,7 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, BTF_KFUNC_TYPE_ACQUIRE, func_id);
/* Check the arguments */
err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, &meta); if (err < 0) return err; /* In case of release function, we get register number of refcounted
@@ -7613,7 +7614,7 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, /* Check return type */ t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
if (acq && !btf_type_is_ptr(t)) {
if (acq && !btf_type_is_struct_ptr(desc_btf, t)) { verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); return -EINVAL; }
@@ -7625,17 +7626,41 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); if (!btf_type_is_struct(ptr_type)) {
ptr_type_name = btf_name_by_offset(desc_btf,
ptr_type->name_off);
verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
func_name, btf_type_str(ptr_type),
ptr_type_name);
return -EINVAL;
if (!meta.r0_size) {
ptr_type_name = btf_name_by_offset(desc_btf,
ptr_type->name_off);
verbose(env,
"kernel function %s returns pointer type %s %s is not supported\n",
func_name,
btf_type_str(ptr_type),
ptr_type_name);
return -EINVAL;
}
if (meta.multiple_ref_obj_id) {
verbose(env,
"kernel function %s has multiple memory tracked objects\n",
func_name);
return -EINVAL;
}
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].type = PTR_TO_MEM;
regs[BPF_REG_0].mem_size = meta.r0_size;
if (meta.r0_rdonly)
regs[BPF_REG_0].type |= MEM_RDONLY;
/* Ensures we don't access the memory after a release_reference() */
if (meta.ref_obj_id)
regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
} else {
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].btf = desc_btf;
regs[BPF_REG_0].type = PTR_TO_BTF_ID;
regs[BPF_REG_0].btf_id = ptr_type_id; }
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].btf = desc_btf;
regs[BPF_REG_0].type = PTR_TO_BTF_ID;
regs[BPF_REG_0].btf_id = ptr_type_id;
if (btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), BTF_KFUNC_TYPE_RET_NULL, func_id)) { regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
-- 2.36.1