On Tue, Jul 19, 2022 at 12:56:25PM -0700, Axel Rasmussen wrote:
Historically, it has been shown that intercepting kernel faults with userfaultfd (thereby forcing the kernel to wait for an arbitrary amount of time) can be exploited, or at least can make some kinds of exploits easier. So, in 37cd0575b8 "userfaultfd: add UFFD_USER_MODE_ONLY" we changed things so, in order for kernel faults to be handled by userfaultfd, either the process needs CAP_SYS_PTRACE, or this sysctl must be configured so that any unprivileged user can do it.
In a typical implementation of a hypervisor with live migration (take QEMU/KVM as one such example), we do indeed need to be able to handle kernel faults. But, both options above are less than ideal:
Toggling the sysctl increases attack surface by allowing any unprivileged user to do it.
Granting the live migration process CAP_SYS_PTRACE gives it this ability, but *also* the ability to "observe and control the execution of another process [...], and examine and change [its] memory and registers" (from ptrace(2)). This isn't something we need or want to be able to do, so granting this permission violates the "principle of least privilege".
This is all a long winded way to say: we want a more fine-grained way to grant access to userfaultfd, without granting other additional permissions at the same time.
To achieve this, add a /dev/userfaultfd misc device. This device provides an alternative to the userfaultfd(2) syscall for the creation of new userfaultfds. The idea is, any userfaultfds created this way will be able to handle kernel faults, without the caller having any special capabilities. Access to this mechanism is instead restricted using e.g. standard filesystem permissions.
Signed-off-by: Axel Rasmussen axelrasmussen@google.com
Thanks, this looks much better.
Acked-by: Peter Xu peterx@redhat.com