*Changes in v17* - Rebase on top of next-20230606 - Minor improvements in PAGEMAP_SCAN IOCTL patch
*Changes in v16* - Fix a corner case - Add exclusive PM_SCAN_OP_WP back
*Changes in v15* - Build fix (Add missed build fix in RESEND)
*Changes in v14* - Fix build error caused by #ifdef added at last minute in some configs
*Changes in v13* - Rebase on top of next-20230414 - Give-up on using uffd_wp_range() and write new helpers, flush tlb only once
*Changes in v12* - Update and other memory types to UFFD_FEATURE_WP_ASYNC - Rebaase on top of next-20230406 - Review updates
*Changes in v11* - Rebase on top of next-20230307 - Base patches on UFFD_FEATURE_WP_UNPOPULATED - Do a lot of cosmetic changes and review updates - Remove ENGAGE_WP + !GET operation as it can be performed with UFFDIO_WRITEPROTECT
*Changes in v10* - Add specific condition to return error if hugetlb is used with wp async - Move changes in tools/include/uapi/linux/fs.h to separate patch - Add documentation
*Changes in v9:* - Correct fault resolution for userfaultfd wp async - Fix build warnings and errors which were happening on some configs - Simplify pagemap ioctl's code
*Changes in v8:* - Update uffd async wp implementation - Improve PAGEMAP_IOCTL implementation
*Changes in v7:* - Add uffd wp async - Update the IOCTL to use uffd under the hood instead of soft-dirty flags
*Motivation* The real motivation for adding PAGEMAP_SCAN IOCTL is to emulate Windows GetWriteWatch() syscall [1]. The GetWriteWatch{} retrieves the addresses of the pages that are written to in a region of virtual memory.
This syscall is used in Windows applications and games etc. This syscall is being emulated in pretty slow manner in userspace. Our purpose is to enhance the kernel such that we translate it efficiently in a better way. Currently some out of tree hack patches are being used to efficiently emulate it in some kernels. We intend to replace those with these patches. So the whole gaming on Linux can effectively get benefit from this. It means there would be tons of users of this code.
CRIU use case [2] was mentioned by Andrei and Danylo:
Use cases for migrating sparse VMAs are binaries sanitized with ASAN, MSAN or TSAN [3]. All of these sanitizers produce sparse mappings of shadow memory [4]. Being able to migrate such binaries allows to highly reduce the amount of work needed to identify and fix post-migration crashes, which happen constantly.
Andrei's defines the following uses of this code: * it is more granular and allows us to track changed pages more effectively. The current interface can clear dirty bits for the entire process only. In addition, reading info about pages is a separate operation. It means we must freeze the process to read information about all its pages, reset dirty bits, only then we can start dumping pages. The information about pages becomes more and more outdated, while we are processing pages. The new interface solves both these downsides. First, it allows us to read pte bits and clear the soft-dirty bit atomically. It means that CRIU will not need to freeze processes to pre-dump their memory. Second, it clears soft-dirty bits for a specified region of memory. It means CRIU will have actual info about pages to the moment of dumping them. * The new interface has to be much faster because basic page filtering is happening in the kernel. With the old interface, we have to read pagemap for each page.
*Implementation Evolution (Short Summary)* From the definition of GetWriteWatch(), we feel like kernel's soft-dirty feature can be used under the hood with some additions like: * reset soft-dirty flag for only a specific region of memory instead of clearing the flag for the entire process * get and clear soft-dirty flag for a specific region atomically
So we decided to use ioctl on pagemap file to read or/and reset soft-dirty flag. But using soft-dirty flag, sometimes we get extra pages which weren't even written. They had become soft-dirty because of VMA merging and VM_SOFTDIRTY flag. This breaks the definition of GetWriteWatch(). We were able to by-pass this short coming by ignoring VM_SOFTDIRTY until David reported that mprotect etc messes up the soft-dirty flag while ignoring VM_SOFTDIRTY [5]. This wasn't happening until [6] got introduced. We discussed if we can revert these patches. But we could not reach to any conclusion. So at this point, I made couple of tries to solve this whole VM_SOFTDIRTY issue by correcting the soft-dirty implementation: * [7] Correct the bug fixed wrongly back in 2014. It had potential to cause regression. We left it behind. * [8] Keep a list of soft-dirty part of a VMA across splits and merges. I got the reply don't increase the size of the VMA by 8 bytes.
At this point, we left soft-dirty considering it is too much delicate and userfaultfd [9] seemed like the only way forward. From there onward, we have been basing soft-dirty emulation on userfaultfd wp feature where kernel resolves the faults itself when WP_ASYNC feature is used. It was straight forward to add WP_ASYNC feature in userfautlfd. Now we get only those pages dirty or written-to which are really written in reality. (PS There is another WP_UNPOPULATED userfautfd feature is required which is needed to avoid pre-faulting memory before write-protecting [9].)
All the different masks were added on the request of CRIU devs to create interface more generic and better.
[1] https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-g... [2] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com [3] https://github.com/google/sanitizers [4] https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm#64-bit [5] https://lore.kernel.org/all/bfcae708-db21-04b4-0bbe-712badd03071@redhat.com [6] https://lore.kernel.org/all/20220725142048.30450-1-peterx@redhat.com/ [7] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.c... [8] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.c... [9] https://lore.kernel.org/all/20230306213925.617814-1-peterx@redhat.com [10] https://lore.kernel.org/all/20230125144529.1630917-1-mdanylo@google.com
* Original Cover letter from v8* Hello,
Note: Soft-dirty pages and pages which have been written-to are synonyms. As kernel already has soft-dirty feature inside which we have given up to use, we are using written-to terminology while using UFFD async WP under the hood.
This IOCTL, PAGEMAP_SCAN on pagemap file can be used to get and/or clear the info about page table entries. The following operations are supported in this ioctl: - Get the information if the pages have been written-to (PAGE_IS_WRITTEN), file mapped (PAGE_IS_FILE), present (PAGE_IS_PRESENT) or swapped (PAGE_IS_SWAPPED). - Write-protect the pages (PAGEMAP_WP_ENGAGE) to start finding which pages have been written-to. - Find pages which have been written-to and write protect the pages (atomic PAGE_IS_WRITTEN + PAGEMAP_WP_ENGAGE)
It is possible to find and clear soft-dirty pages entirely in userspace. But it isn't efficient: - The mprotect and SIGSEGV handler for bookkeeping - The userfaultfd wp (synchronous) with the handler for bookkeeping
Some benchmarks can be seen here[1]. This series adds features that weren't present earlier: - There is no atomic get soft-dirty/Written-to status and clear present in the kernel. - The pages which have been written-to can not be found in accurate way. (Kernel's soft-dirty PTE bit + sof_dirty VMA bit shows more soft-dirty pages than there actually are.)
Historically, soft-dirty PTE bit tracking has been used in the CRIU project. The procfs interface is enough for finding the soft-dirty bit status and clearing the soft-dirty bit of all the pages of a process. We have the use case where we need to track the soft-dirty PTE bit for only specific pages on-demand. We need this tracking and clear mechanism of a region of memory while the process is running to emulate the getWriteWatch() syscall of Windows.
*(Moved to using UFFD instead of soft-dirtyi feature to find pages which have been written-to from v7 patch series)*: Stop using the soft-dirty flags for finding which pages have been written to. It is too delicate and wrong as it shows more soft-dirty pages than the actual soft-dirty pages. There is no interest in correcting it [2][3] as this is how the feature was written years ago. It shouldn't be updated to changed behaviour. Peter Xu has suggested using the async version of the UFFD WP [4] as it is based inherently on the PTEs.
So in this patch series, I've added a new mode to the UFFD which is asynchronous version of the write protect. When this variant of the UFFD WP is used, the page faults are resolved automatically by the kernel. The pages which have been written-to can be found by reading pagemap file (!PM_UFFD_WP). This feature can be used successfully to find which pages have been written to from the time the pages were write protected. This works just like the soft-dirty flag without showing any extra pages which aren't soft-dirty in reality.
The information related to pages if the page is file mapped, present and swapped is required for the CRIU project [5][6]. The addition of the required mask, any mask, excluded mask and return masks are also required for the CRIU project [5].
The IOCTL returns the addresses of the pages which match the specific masks. The page addresses are returned in struct page_region in a compact form. The max_pages is needed to support a use case where user only wants to get a specific number of pages. So there is no need to find all the pages of interest in the range when max_pages is specified. The IOCTL returns when the maximum number of the pages are found. The max_pages is optional. If max_pages is specified, it must be equal or greater than the vec_size. This restriction is needed to handle worse case when one page_region only contains info of one page and it cannot be compacted. This is needed to emulate the Windows getWriteWatch() syscall.
The patch series include the detailed selftest which can be used as an example for the uffd async wp test and PAGEMAP_IOCTL. It shows the interface usages as well.
[1] https://lore.kernel.org/lkml/54d4c322-cd6e-eefd-b161-2af2b56aae24@collabora.... [2] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.c... [3] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.c... [4] https://lore.kernel.org/all/Y6Hc2d+7eTKs7AiH@x1n [5] https://lore.kernel.org/all/YyiDg79flhWoMDZB@gmail.com/ [6] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com/
Regards, Muhammad Usama Anjum
Muhammad Usama Anjum (4): fs/proc/task_mmu: Implement IOCTL to get and optionally clear info about PTEs tools headers UAPI: Update linux/fs.h with the kernel sources mm/pagemap: add documentation of PAGEMAP_SCAN IOCTL selftests: mm: add pagemap ioctl tests
Peter Xu (1): userfaultfd: UFFD_FEATURE_WP_ASYNC
Documentation/admin-guide/mm/pagemap.rst | 58 + Documentation/admin-guide/mm/userfaultfd.rst | 35 + fs/proc/task_mmu.c | 505 ++++++ fs/userfaultfd.c | 26 +- include/linux/hugetlb.h | 1 + include/linux/userfaultfd_k.h | 21 +- include/uapi/linux/fs.h | 53 + include/uapi/linux/userfaultfd.h | 9 +- mm/hugetlb.c | 34 +- mm/memory.c | 27 +- tools/include/uapi/linux/fs.h | 53 + tools/testing/selftests/mm/.gitignore | 1 + tools/testing/selftests/mm/Makefile | 3 +- tools/testing/selftests/mm/config | 1 + tools/testing/selftests/mm/pagemap_ioctl.c | 1459 ++++++++++++++++++ tools/testing/selftests/mm/run_vmtests.sh | 4 + 16 files changed, 2266 insertions(+), 24 deletions(-) create mode 100644 tools/testing/selftests/mm/pagemap_ioctl.c mode change 100644 => 100755 tools/testing/selftests/mm/run_vmtests.sh
From: Peter Xu peterx@redhat.com
This patch adds a new userfaultfd-wp feature UFFD_FEATURE_WP_ASYNC, that allows userfaultfd wr-protect faults to be resolved by the kernel directly.
It can be used like a high accuracy version of soft-dirty, without vma modifications during tracking, and also with ranged support by default rather than for a whole mm when reset the protections due to existence of ioctl(UFFDIO_WRITEPROTECT).
Several goals of such a dirty tracking interface:
1. All types of memory should be supported and tracable. This is nature for soft-dirty but should mention when the context is userfaultfd, because it used to only support anon/shmem/hugetlb. The problem is for a dirty tracking purpose these three types may not be enough, and it's legal to track anything e.g. any page cache writes from mmap.
2. Protections can be applied to partial of a memory range, without vma split/merge fuss. The hope is that the tracking itself should not affect any vma layout change. It also helps when reset happens because the reset will not need mmap write lock which can block the tracee.
3. Accuracy needs to be maintained. This means we need pte markers to work on any type of VMA.
One could question that, the whole concept of async dirty tracking is not really close to fundamentally what userfaultfd used to be: it's not "a fault to be serviced by userspace" anymore. However, using userfaultfd-wp here as a framework is convenient for us in at least:
1. VM_UFFD_WP vma flag, which has a very good name to suite something like this, so we don't need VM_YET_ANOTHER_SOFT_DIRTY. Just use a new feature bit to identify from a sync version of uffd-wp registration.
2. PTE markers logic can be leveraged across the whole kernel to maintain the uffd-wp bit as long as an arch supports, this also applies to this case where uffd-wp bit will be a hint to dirty information and it will not go lost easily (e.g. when some page cache ptes got zapped).
3. Reuse ioctl(UFFDIO_WRITEPROTECT) interface for either starting or resetting a range of memory, while there's no counterpart in the old soft-dirty world, hence if this is wanted in a new design we'll need a new interface otherwise.
We can somehow understand that commonality because uffd-wp was fundamentally a similar idea of write-protecting pages just like soft-dirty.
This implementation allows WP_ASYNC to imply WP_UNPOPULATED, because so far WP_ASYNC seems to not usable if without WP_UNPOPULATE. This also gives us chance to modify impl of WP_ASYNC just in case it could be not depending on WP_UNPOPULATED anymore in the future kernels. It's also fine to imply that because both features will rely on PTE_MARKER_UFFD_WP config option, so they'll show up together (or both missing) in an UFFDIO_API probe.
vma_can_userfault() now allows any VMA if the userfaultfd registration is only about async uffd-wp. So we can track dirty for all kinds of memory including generic file systems (like XFS, EXT4 or BTRFS).
One trick worth mention in do_wp_page() is that we need to manually update vmf->orig_pte here because it can be used later with a pte_same() check - this path always has FAULT_FLAG_ORIG_PTE_VALID set in the flags.
The major defect of this approach of dirty tracking is we need to populate the pgtables when tracking starts. Soft-dirty doesn't do it like that. It's unwanted in the case where the range of memory to track is huge and unpopulated (e.g., tracking updates on a 10G file with mmap() on top, without having any page cache installed yet). One way to improve this is to allow pte markers exist for larger than PTE level for PMD+. That will not change the interface if to implemented, so we can leave that for later.
Co-developed-by: Muhammad Usama Anjum usama.anjum@collabora.com Signed-off-by: Muhammad Usama Anjum usama.anjum@collabora.com Signed-off-by: Peter Xu peterx@redhat.com --- Changes in v17: - Rebase on top of next-20230525
Changes in v12: - Peter added the hugetlb support and revamped some other implementation - Transferred the authorship to Peter - Merge documentation to this patch
Changes in v11: - Fix return code in userfaultfd_register() and minor changes here and there - Rebase on top of next-20230307 - Base patches on UFFD_FEATURE_WP_UNPOPULATED https://lore.kernel.org/all/20230306213925.617814-1-peterx@redhat.com - UFFD_FEATURE_WP_ASYNC depends on UFFD_FEATURE_WP_UNPOPULATED to work (correctly)
Changes in v10: - Build fix - Update comments and add error condition to return error from uffd register if hugetlb pages are present when wp async flag is set
Changes in v9: - Correct the fault resolution with code contributed by Peter
Changes in v7: - Remove UFFDIO_WRITEPROTECT_MODE_ASYNC_WP and add UFFD_FEATURE_WP_ASYNC - Handle automatic page fault resolution in better way (thanks to Peter) --- Documentation/admin-guide/mm/userfaultfd.rst | 35 ++++++++++++++++++++ fs/userfaultfd.c | 26 ++++++++++++--- include/linux/userfaultfd_k.h | 21 +++++++++++- include/uapi/linux/userfaultfd.h | 9 ++++- mm/hugetlb.c | 32 ++++++++++-------- mm/memory.c | 27 +++++++++++++-- 6 files changed, 128 insertions(+), 22 deletions(-)
diff --git a/Documentation/admin-guide/mm/userfaultfd.rst b/Documentation/admin-guide/mm/userfaultfd.rst index 7c304e432205..4b7f43fbbe18 100644 --- a/Documentation/admin-guide/mm/userfaultfd.rst +++ b/Documentation/admin-guide/mm/userfaultfd.rst @@ -244,6 +244,41 @@ write-protected (so future writes will also result in a WP fault). These ioctls support a mode flag (``UFFDIO_COPY_MODE_WP`` or ``UFFDIO_CONTINUE_MODE_WP`` respectively) to configure the mapping this way.
+If the userfaultfd context has ``UFFD_FEATURE_WP_ASYNC`` feature bit set, +any vma registered with write-protection will work in async mode rather +than the default sync mode. + +In async mode, there will be no message generated when a write operation +happens, meanwhile the write-protection will be resolved automatically by +the kernel. It can be seen as a more accurate version of soft-dirty +tracking and it can be different in a few ways: + + - The dirty result will not be affected by vma changes (e.g. vma + merging) because the dirty is only tracked by the pte. + + - It supports range operations by default, so one can enable tracking on + any range of memory as long as page aligned. + + - Dirty information will not get lost if the pte was zapped due to + various reasons (e.g. during split of a shmem transparent huge page). + + - Due to a reverted meaning of soft-dirty (page clean when uffd-wp bit + set; dirty when uffd-wp bit cleared), it has different semantics on + some of the memory operations. For example: ``MADV_DONTNEED`` on + anonymous (or ``MADV_REMOVE`` on a file mapping) will be treated as + dirtying of memory by dropping uffd-wp bit during the procedure. + +The user app can collect the "written/dirty" status by looking up the +uffd-wp bit for the pages being interested in /proc/pagemap. + +The page will not be under track of uffd-wp async mode until the page is +explicitly write-protected by ``ioctl(UFFDIO_WRITEPROTECT)`` with the mode +flag ``UFFDIO_WRITEPROTECT_MODE_WP`` set. Trying to resolve a page fault +that was tracked by async mode userfaultfd-wp is invalid. + +When userfaultfd-wp async mode is used alone, it can be applied to all +kinds of memory. + QEMU/KVM ========
diff --git a/fs/userfaultfd.c b/fs/userfaultfd.c index a2a42a02848f..2f95d705e945 100644 --- a/fs/userfaultfd.c +++ b/fs/userfaultfd.c @@ -123,6 +123,11 @@ static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) return ctx->features & UFFD_FEATURE_INITIALIZED; }
+static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx) +{ + return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC); +} + /* * Whether WP_UNPOPULATED is enabled on the uffd context. It is only * meaningful when userfaultfd_wp()==true on the vma and when it's @@ -1327,6 +1332,7 @@ static int userfaultfd_register(struct userfaultfd_ctx *ctx, bool basic_ioctls; unsigned long start, end, vma_end; struct vma_iterator vmi; + bool wp_async = userfaultfd_wp_async_ctx(ctx); pgoff_t pgoff;
user_uffdio_register = (struct uffdio_register __user *) arg; @@ -1401,7 +1407,7 @@ static int userfaultfd_register(struct userfaultfd_ctx *ctx,
/* check not compatible vmas */ ret = -EINVAL; - if (!vma_can_userfault(cur, vm_flags)) + if (!vma_can_userfault(cur, vm_flags, wp_async)) goto out_unlock;
/* @@ -1462,7 +1468,7 @@ static int userfaultfd_register(struct userfaultfd_ctx *ctx, for_each_vma_range(vmi, vma, end) { cond_resched();
- BUG_ON(!vma_can_userfault(vma, vm_flags)); + BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async)); BUG_ON(vma->vm_userfaultfd_ctx.ctx && vma->vm_userfaultfd_ctx.ctx != ctx); WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); @@ -1562,6 +1568,7 @@ static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, unsigned long start, end, vma_end; const void __user *buf = (void __user *)arg; struct vma_iterator vmi; + bool wp_async = userfaultfd_wp_async_ctx(ctx); pgoff_t pgoff;
ret = -EFAULT; @@ -1616,7 +1623,7 @@ static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, * provides for more strict behavior to notice * unregistration errors. */ - if (!vma_can_userfault(cur, cur->vm_flags)) + if (!vma_can_userfault(cur, cur->vm_flags, wp_async)) goto out_unlock;
found = true; @@ -1632,7 +1639,7 @@ static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, for_each_vma_range(vmi, vma, end) { cond_resched();
- BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); + BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
/* * Nothing to do: this vma is already registered into this @@ -1970,6 +1977,11 @@ static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) return ret; }
+bool userfaultfd_wp_async(struct vm_area_struct *vma) +{ + return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx); +} + static inline unsigned int uffd_ctx_features(__u64 user_features) { /* @@ -2003,6 +2015,11 @@ static int userfaultfd_api(struct userfaultfd_ctx *ctx, ret = -EPERM; if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) goto err_out; + + /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */ + if (features & UFFD_FEATURE_WP_ASYNC) + features |= UFFD_FEATURE_WP_UNPOPULATED; + /* report all available features and ioctls to userland */ uffdio_api.features = UFFD_API_FEATURES; #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR @@ -2015,6 +2032,7 @@ static int userfaultfd_api(struct userfaultfd_ctx *ctx, #ifndef CONFIG_PTE_MARKER_UFFD_WP uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; + uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC; #endif uffdio_api.ioctls = UFFD_API_IOCTLS; ret = -EFAULT; diff --git a/include/linux/userfaultfd_k.h b/include/linux/userfaultfd_k.h index ac7b0c96d351..3b684770c3f8 100644 --- a/include/linux/userfaultfd_k.h +++ b/include/linux/userfaultfd_k.h @@ -157,11 +157,22 @@ static inline bool userfaultfd_armed(struct vm_area_struct *vma) }
static inline bool vma_can_userfault(struct vm_area_struct *vma, - unsigned long vm_flags) + unsigned long vm_flags, + bool wp_async) { + vm_flags &= __VM_UFFD_FLAGS; + if ((vm_flags & VM_UFFD_MINOR) && (!is_vm_hugetlb_page(vma) && !vma_is_shmem(vma))) return false; + + /* + * If wp async enabled, and WP is the only mode enabled, allow any + * memory type. + */ + if (wp_async && (vm_flags == VM_UFFD_WP)) + return true; + #ifndef CONFIG_PTE_MARKER_UFFD_WP /* * If user requested uffd-wp but not enabled pte markers for @@ -171,6 +182,8 @@ static inline bool vma_can_userfault(struct vm_area_struct *vma, if ((vm_flags & VM_UFFD_WP) && !vma_is_anonymous(vma)) return false; #endif + + /* By default, allow any of anon|shmem|hugetlb */ return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || vma_is_shmem(vma); } @@ -193,6 +206,7 @@ extern int userfaultfd_unmap_prep(struct vm_area_struct *vma, extern void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf); extern bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma); +extern bool userfaultfd_wp_async(struct vm_area_struct *vma);
#else /* CONFIG_USERFAULTFD */
@@ -293,6 +307,11 @@ static inline bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) return false; }
+static inline bool userfaultfd_wp_async(struct vm_area_struct *vma) +{ + return false; +} + #endif /* CONFIG_USERFAULTFD */
static inline bool userfaultfd_wp_use_markers(struct vm_area_struct *vma) diff --git a/include/uapi/linux/userfaultfd.h b/include/uapi/linux/userfaultfd.h index 66dd4cd277bd..cfb87a112a9f 100644 --- a/include/uapi/linux/userfaultfd.h +++ b/include/uapi/linux/userfaultfd.h @@ -39,7 +39,8 @@ UFFD_FEATURE_MINOR_SHMEM | \ UFFD_FEATURE_EXACT_ADDRESS | \ UFFD_FEATURE_WP_HUGETLBFS_SHMEM | \ - UFFD_FEATURE_WP_UNPOPULATED) + UFFD_FEATURE_WP_UNPOPULATED | \ + UFFD_FEATURE_WP_ASYNC) #define UFFD_API_IOCTLS \ ((__u64)1 << _UFFDIO_REGISTER | \ (__u64)1 << _UFFDIO_UNREGISTER | \ @@ -210,6 +211,11 @@ struct uffdio_api { * (i.e. empty ptes). This will be the default behavior for shmem * & hugetlbfs, so this flag only affects anonymous memory behavior * when userfault write-protection mode is registered. + * + * UFFD_FEATURE_WP_ASYNC indicates that userfaultfd write-protection + * asynchronous mode is supported in which the write fault is + * automatically resolved and write-protection is un-set. + * It implies UFFD_FEATURE_WP_UNPOPULATED. */ #define UFFD_FEATURE_PAGEFAULT_FLAG_WP (1<<0) #define UFFD_FEATURE_EVENT_FORK (1<<1) @@ -225,6 +231,7 @@ struct uffdio_api { #define UFFD_FEATURE_EXACT_ADDRESS (1<<11) #define UFFD_FEATURE_WP_HUGETLBFS_SHMEM (1<<12) #define UFFD_FEATURE_WP_UNPOPULATED (1<<13) +#define UFFD_FEATURE_WP_ASYNC (1<<14) __u64 features;
__u64 ioctls; diff --git a/mm/hugetlb.c b/mm/hugetlb.c index ea24718db4af..2b8559f9c1e2 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -6159,21 +6159,27 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, /* Handle userfault-wp first, before trying to lock more pages */ if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { - struct vm_fault vmf = { - .vma = vma, - .address = haddr, - .real_address = address, - .flags = flags, - }; + if (!userfaultfd_wp_async(vma)) { + struct vm_fault vmf = { + .vma = vma, + .address = haddr, + .real_address = address, + .flags = flags, + };
- spin_unlock(ptl); - if (pagecache_folio) { - folio_unlock(pagecache_folio); - folio_put(pagecache_folio); + spin_unlock(ptl); + if (pagecache_folio) { + folio_unlock(pagecache_folio); + folio_put(pagecache_folio); + } + hugetlb_vma_unlock_read(vma); + mutex_unlock(&hugetlb_fault_mutex_table[hash]); + return handle_userfault(&vmf, VM_UFFD_WP); } - hugetlb_vma_unlock_read(vma); - mutex_unlock(&hugetlb_fault_mutex_table[hash]); - return handle_userfault(&vmf, VM_UFFD_WP); + + entry = huge_pte_clear_uffd_wp(entry); + set_huge_pte_at(mm, haddr, ptep, entry); + /* Fallthrough to CoW */ }
/* diff --git a/mm/memory.c b/mm/memory.c index 80ce9dda2779..7f0fa7b8ddb6 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -3328,11 +3328,28 @@ static vm_fault_t do_wp_page(struct vm_fault *vmf) const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; struct vm_area_struct *vma = vmf->vma; struct folio *folio = NULL; + pte_t pte;
if (likely(!unshare)) { if (userfaultfd_pte_wp(vma, *vmf->pte)) { - pte_unmap_unlock(vmf->pte, vmf->ptl); - return handle_userfault(vmf, VM_UFFD_WP); + if (!userfaultfd_wp_async(vma)) { + pte_unmap_unlock(vmf->pte, vmf->ptl); + return handle_userfault(vmf, VM_UFFD_WP); + } + + /* + * Nothing needed (cache flush, TLB invalidations, + * etc.) because we're only removing the uffd-wp bit, + * which is completely invisible to the user. + */ + pte = pte_clear_uffd_wp(*vmf->pte); + + set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); + /* + * Update this to be prepared for following up CoW + * handling + */ + vmf->orig_pte = pte; }
/* @@ -4819,8 +4836,11 @@ static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
if (vma_is_anonymous(vmf->vma)) { if (likely(!unshare) && - userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) + userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) { + if (userfaultfd_wp_async(vmf->vma)) + goto split; return handle_userfault(vmf, VM_UFFD_WP); + } return do_huge_pmd_wp_page(vmf); }
@@ -4832,6 +4852,7 @@ static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) } }
+split: /* COW or write-notify handled on pte level: split pmd. */ __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
This IOCTL, PAGEMAP_SCAN on pagemap file can be used to get and/or clear the info about page table entries. The following operations are supported in this ioctl: - Get the information if the pages have been written-to (PAGE_IS_WRITTEN), file mapped (PAGE_IS_FILE), present (PAGE_IS_PRESENT) or swapped (PAGE_IS_SWAPPED). - Find pages which have been written-to and/or write protect the pages (atomic PM_SCAN_OP_GET + PM_SCAN_OP_WP)
This IOCTL can be extended to get information about more PTE bits.
Signed-off-by: Muhammad Usama Anjum usama.anjum@collabora.com --- Changes in v17: - Rebased on next-20230606 - Made make_uffd_wp_*_pte() better and minor changes
Changes in v16: - Fixed a corner case where kernel writes beyond user buffer by one element - Bring back exclusive PM_SCAN_OP_WP - Cosmetic changes
Changes in v15: - Build fix: - Use generic tlb flush function in pagemap_scan_pmd_entry() instead of using x86 specific flush function in do_pagemap_scan() - Remove #ifdef from pagemap_scan_hugetlb_entry() - Use mm instead of undefined vma->vm_mm
Changes in v14: - Fix build error caused by #ifdef added at last minute in some configs
Changes in v13: - Review updates - mmap_read_lock_killable() instead of mmap_read_lock() - Replace uffd_wp_range() with helpers which increases performance drastically for OP_WP operations by reducing the number of tlb flushing etc - Add MMU_NOTIFY_PROTECTION_VMA notification for the memory range
Changes in v12: - Add hugetlb support to cover all memory types - Merge "userfaultfd: Define dummy uffd_wp_range()" with this patch - Review updates to the code
Changes in v11: - Find written pages in a better way - Fix a corner case (thanks Paul) - Improve the code/comments - remove ENGAGE_WP + ! GET operation - shorten the commit message in favour of moving documentation to pagemap.rst
Changes in v10: - move changes in tools/include/uapi/linux/fs.h to separate patch - update commit message
Change in v8: - Correct is_pte_uffd_wp() - Improve readability and error checks - Remove some un-needed code
Changes in v7: - Rebase on top of latest next - Fix some corner cases - Base soft-dirty on the uffd wp async - Update the terminologies - Optimize the memory usage inside the ioctl
Changes in v6: - Rename variables and update comments - Make IOCTL independent of soft_dirty config - Change masks and bitmap type to _u64 - Improve code quality
Changes in v5: - Remove tlb flushing even for clear operation
Changes in v4: - Update the interface and implementation
Changes in v3: - Tighten the user-kernel interface by using explicit types and add more error checking
Changes in v2: - Convert the interface from syscall to ioctl - Remove pidfd support as it doesn't make sense in ioctl
changes --- fs/proc/task_mmu.c | 505 ++++++++++++++++++++++++++++++++++++++++ include/linux/hugetlb.h | 1 + include/uapi/linux/fs.h | 53 +++++ mm/hugetlb.c | 2 +- 4 files changed, 560 insertions(+), 1 deletion(-)
diff --git a/fs/proc/task_mmu.c b/fs/proc/task_mmu.c index 6259dd432eeb..ea29a298f7b8 100644 --- a/fs/proc/task_mmu.c +++ b/fs/proc/task_mmu.c @@ -19,6 +19,7 @@ #include <linux/shmem_fs.h> #include <linux/uaccess.h> #include <linux/pkeys.h> +#include <linux/minmax.h>
#include <asm/elf.h> #include <asm/tlb.h> @@ -1764,11 +1765,515 @@ static int pagemap_release(struct inode *inode, struct file *file) return 0; }
+#define PM_SCAN_FOUND_MAX_PAGES (1) +#define PM_SCAN_BITS_ALL (PAGE_IS_WRITTEN | PAGE_IS_FILE | \ + PAGE_IS_PRESENT | PAGE_IS_SWAPPED) +#define PM_SCAN_OPS (PM_SCAN_OP_GET | PM_SCAN_OP_WP) +#define IS_PM_SCAN_GET(flags) (flags & PM_SCAN_OP_GET) +#define IS_PM_SCAN_WP(flags) (flags & PM_SCAN_OP_WP) +#define PM_SCAN_BITMAP(wt, file, present, swap) \ + ((wt) | ((file) << 1) | ((present) << 2) | ((swap) << 3)) + +struct pagemap_scan_private { + struct page_region *vec, cur; + unsigned long vec_len, vec_index, max_pages, found_pages, flags; + unsigned long required_mask, anyof_mask, excluded_mask, return_mask; +}; + +static inline bool is_pte_uffd_wp(pte_t pte) +{ + return (pte_present(pte) && pte_uffd_wp(pte)) || + pte_swp_uffd_wp_any(pte); +} + +static inline void make_uffd_wp_pte(struct vm_area_struct *vma, + unsigned long addr, pte_t *pte) +{ + pte_t ptent = *pte; + + if (pte_present(ptent)) { + pte_t old_pte; + + old_pte = ptep_modify_prot_start(vma, addr, pte); + ptent = pte_mkuffd_wp(ptent); + ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); + } else if (is_swap_pte(ptent)) { + ptent = pte_swp_mkuffd_wp(ptent); + set_pte_at(vma->vm_mm, addr, pte, ptent); + } else { + set_pte_at(vma->vm_mm, addr, pte, + make_pte_marker(PTE_MARKER_UFFD_WP)); + } +} + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static inline bool is_pmd_uffd_wp(pmd_t pmd) +{ + return (pmd_present(pmd) && pmd_uffd_wp(pmd)) || + (is_swap_pmd(pmd) && pmd_swp_uffd_wp(pmd)); +} + +static inline void make_uffd_wp_pmd(struct vm_area_struct *vma, + unsigned long addr, pmd_t *pmdp) +{ + pmd_t old, pmd = *pmdp; + + if (pmd_present(pmd)) { + old = pmdp_invalidate_ad(vma, addr, pmdp); + pmd = pmd_mkuffd_wp(old); + set_pmd_at(vma->vm_mm, addr, pmdp, pmd); + } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { + pmd = pmd_swp_mkuffd_wp(pmd); + set_pmd_at(vma->vm_mm, addr, pmdp, pmd); + } +} +#endif + +#ifdef CONFIG_HUGETLB_PAGE +static inline bool is_huge_pte_uffd_wp(pte_t pte) +{ + return ((pte_present(pte) && huge_pte_uffd_wp(pte)) || + pte_swp_uffd_wp_any(pte)); +} + +static inline void make_uffd_wp_huge_pte(struct vm_area_struct *vma, + unsigned long addr, pte_t *ptep, + pte_t ptent) +{ + if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent)) + return; + + if (is_hugetlb_entry_migration(ptent)) + set_huge_pte_at(vma->vm_mm, addr, ptep, + pte_swp_mkuffd_wp(ptent)); + else if (!huge_pte_none(ptent)) + huge_ptep_modify_prot_commit(vma, addr, ptep, ptent, + huge_pte_mkuffd_wp(ptent)); + else + set_huge_pte_at(vma->vm_mm, addr, ptep, + make_pte_marker(PTE_MARKER_UFFD_WP)); +} +#endif + +static inline bool pagemap_scan_check_page_written(struct pagemap_scan_private *p) +{ + return (p->required_mask | p->anyof_mask | p->excluded_mask) & + PAGE_IS_WRITTEN; +} + +static int pagemap_scan_test_walk(unsigned long start, unsigned long end, + struct mm_walk *walk) +{ + struct pagemap_scan_private *p = walk->private; + struct vm_area_struct *vma = walk->vma; + + if (pagemap_scan_check_page_written(p) && (!userfaultfd_wp_async(vma) || + !userfaultfd_wp_use_markers(vma))) + return -EPERM; + + if (vma->vm_flags & VM_PFNMAP) + return 1; + + return 0; +} + +static int pagemap_scan_output(bool wt, bool file, bool pres, bool swap, + struct pagemap_scan_private *p, + unsigned long addr, unsigned int n_pages) +{ + unsigned long bitmap = PM_SCAN_BITMAP(wt, file, pres, swap); + struct page_region *cur = &p->cur; + + if (!n_pages) + return -EINVAL; + + if ((p->required_mask & bitmap) != p->required_mask) + return 0; + if (p->anyof_mask && !(p->anyof_mask & bitmap)) + return 0; + if (p->excluded_mask & bitmap) + return 0; + + bitmap &= p->return_mask; + if (!bitmap) + return 0; + + if (cur->bitmap == bitmap && + cur->start + cur->len * PAGE_SIZE == addr) { + cur->len += n_pages; + p->found_pages += n_pages; + } else { + /* + * All data is copied to cur first. When more data is found, we + * push cur to vec and copy new data to cur. The vec_index + * represents the current index of vec array. We add 1 to the + * vec_index while performing checks to account for data in cur. + */ + if (cur->len && (p->vec_index + 1) >= p->vec_len) + return -ENOSPC; + + if (cur->len) { + memcpy(&p->vec[p->vec_index], cur, sizeof(*p->vec)); + p->vec_index++; + } + + cur->start = addr; + cur->len = n_pages; + cur->bitmap = bitmap; + p->found_pages += n_pages; + } + + if (p->max_pages && (p->found_pages == p->max_pages)) + return PM_SCAN_FOUND_MAX_PAGES; + + return 0; +} + +static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start, + unsigned long end, struct mm_walk *walk) +{ + struct pagemap_scan_private *p = walk->private; + struct vm_area_struct *vma = walk->vma; + unsigned long addr = end; + pte_t *pte, *orig_pte; + spinlock_t *ptl; + bool is_written; + int ret = 0; + + arch_enter_lazy_mmu_mode(); + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + ptl = pmd_trans_huge_lock(pmd, vma); + if (ptl) { + unsigned long n_pages = (end - start)/PAGE_SIZE; + + if (p->max_pages && n_pages > p->max_pages - p->found_pages) + n_pages = p->max_pages - p->found_pages; + + is_written = !is_pmd_uffd_wp(*pmd); + + /* + * Break huge page into small pages if the WP operation need to + * be performed is on a portion of the huge page. + */ + if (is_written && IS_PM_SCAN_WP(p->flags) && + n_pages < HPAGE_SIZE/PAGE_SIZE) { + spin_unlock(ptl); + + split_huge_pmd(vma, pmd, start); + goto process_smaller_pages; + } + + if (IS_PM_SCAN_GET(p->flags)) + ret = pagemap_scan_output(is_written, vma->vm_file, + pmd_present(*pmd), + is_swap_pmd(*pmd), + p, start, n_pages); + + if (ret >= 0 && is_written && IS_PM_SCAN_WP(p->flags)) + make_uffd_wp_pmd(vma, addr, pmd); + + if (IS_PM_SCAN_WP(p->flags)) + flush_tlb_range(vma, start, end); + + spin_unlock(ptl); + + arch_leave_lazy_mmu_mode(); + return ret; + } + +process_smaller_pages: + if (pmd_trans_unstable(pmd)) { + arch_leave_lazy_mmu_mode(); + walk->action = ACTION_AGAIN; + return 0; + } +#endif + + orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl); + for (addr = start; addr < end && !ret; pte++, addr += PAGE_SIZE) { + is_written = !is_pte_uffd_wp(*pte); + + if (IS_PM_SCAN_GET(p->flags)) + ret = pagemap_scan_output(is_written, vma->vm_file, + pte_present(*pte), + is_swap_pte(*pte), + p, addr, 1); + + if (ret >= 0 && is_written && IS_PM_SCAN_WP(p->flags)) + make_uffd_wp_pte(vma, addr, pte); + } + + if (IS_PM_SCAN_WP(p->flags)) + flush_tlb_range(vma, start, addr); + + pte_unmap_unlock(orig_pte, ptl); + arch_leave_lazy_mmu_mode(); + + cond_resched(); + return ret; +} + +#ifdef CONFIG_HUGETLB_PAGE +static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask, + unsigned long start, unsigned long end, + struct mm_walk *walk) +{ + unsigned long n_pages = (end - start)/PAGE_SIZE; + struct pagemap_scan_private *p = walk->private; + struct vm_area_struct *vma = walk->vma; + struct hstate *h = hstate_vma(vma); + spinlock_t *ptl; + bool is_written; + int ret = 0; + pte_t pte; + + if (p->max_pages && n_pages > p->max_pages - p->found_pages) + n_pages = p->max_pages - p->found_pages; + + if (IS_PM_SCAN_WP(p->flags)) { + i_mmap_lock_write(vma->vm_file->f_mapping); + ptl = huge_pte_lock(h, vma->vm_mm, ptep); + } + + pte = huge_ptep_get(ptep); + is_written = !is_huge_pte_uffd_wp(pte); + + /* + * Partial hugetlb page clear isn't supported + */ + if (is_written && IS_PM_SCAN_WP(p->flags) && + n_pages < HPAGE_SIZE/PAGE_SIZE) { + ret = -EPERM; + goto unlock_and_return; + } + + if (IS_PM_SCAN_GET(p->flags)) { + ret = pagemap_scan_output(is_written, vma->vm_file, + pte_present(pte), is_swap_pte(pte), + p, start, n_pages); + if (ret < 0) + goto unlock_and_return; + } + + if (is_written && IS_PM_SCAN_WP(p->flags)) { + make_uffd_wp_huge_pte(vma, start, ptep, pte); + flush_hugetlb_tlb_range(vma, start, end); + } + +unlock_and_return: + if (IS_PM_SCAN_WP(p->flags)) { + spin_unlock(ptl); + i_mmap_unlock_write(vma->vm_file->f_mapping); + } + + return ret; +} +#else +#define pagemap_scan_hugetlb_entry NULL +#endif + +static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end, + int depth, struct mm_walk *walk) +{ + unsigned long n_pages = (end - addr)/PAGE_SIZE; + struct pagemap_scan_private *p = walk->private; + struct vm_area_struct *vma = walk->vma; + int ret = 0; + + if (!vma || !IS_PM_SCAN_GET(p->flags)) + return 0; + + if (p->max_pages && n_pages > p->max_pages - p->found_pages) + n_pages = p->max_pages - p->found_pages; + + ret = pagemap_scan_output(false, vma->vm_file, false, false, p, addr, + n_pages); + + return ret; +} + +static const struct mm_walk_ops pagemap_scan_ops = { + .test_walk = pagemap_scan_test_walk, + .pmd_entry = pagemap_scan_pmd_entry, + .pte_hole = pagemap_scan_pte_hole, + .hugetlb_entry = pagemap_scan_hugetlb_entry, +}; + +static int pagemap_scan_args_valid(struct pm_scan_arg *arg, unsigned long start, + struct page_region __user *vec) +{ + /* Detect illegal size, flags, len and masks */ + if (arg->size != sizeof(struct pm_scan_arg)) + return -EINVAL; + if (arg->flags & ~PM_SCAN_OPS) + return -EINVAL; + if (!arg->len) + return -EINVAL; + if ((arg->required_mask | arg->anyof_mask | arg->excluded_mask | + arg->return_mask) & ~PM_SCAN_BITS_ALL) + return -EINVAL; + if (!arg->required_mask && !arg->anyof_mask && + !arg->excluded_mask) + return -EINVAL; + if (!arg->return_mask) + return -EINVAL; + + /* Validate memory range */ + if (!IS_ALIGNED(start, PAGE_SIZE)) + return -EINVAL; + if (!access_ok((void __user *)start, arg->len)) + return -EFAULT; + + if (IS_PM_SCAN_GET(arg->flags)) { + if (!arg->vec) + return -EINVAL; + if (arg->vec_len == 0) + return -EINVAL; + } + + if (IS_PM_SCAN_WP(arg->flags)) { + if (!IS_PM_SCAN_GET(arg->flags) && arg->max_pages) + return -EINVAL; + + if ((arg->required_mask | arg->anyof_mask | arg->excluded_mask) & + ~PAGE_IS_WRITTEN) + return -EINVAL; + } + + return 0; +} + +static long do_pagemap_scan(struct mm_struct *mm, + struct pm_scan_arg __user *uarg) +{ + unsigned long start, end, walk_start, walk_end; + unsigned long empty_slots, vec_index = 0; + struct mmu_notifier_range range; + struct page_region __user *vec; + struct pagemap_scan_private p; + struct pm_scan_arg arg; + int ret = 0; + + if (copy_from_user(&arg, uarg, sizeof(arg))) + return -EFAULT; + + start = untagged_addr((unsigned long)arg.start); + vec = (struct page_region *)untagged_addr((unsigned long)arg.vec); + + ret = pagemap_scan_args_valid(&arg, start, vec); + if (ret) + return ret; + + end = start + arg.len; + p.max_pages = arg.max_pages; + p.found_pages = 0; + p.flags = arg.flags; + p.required_mask = arg.required_mask; + p.anyof_mask = arg.anyof_mask; + p.excluded_mask = arg.excluded_mask; + p.return_mask = arg.return_mask; + p.cur.start = p.cur.len = p.cur.bitmap = 0; + p.vec = NULL; + p.vec_len = PAGEMAP_WALK_SIZE >> PAGE_SHIFT; + + /* + * Allocate smaller buffer to get output from inside the page walk + * functions and walk page range in PAGEMAP_WALK_SIZE size chunks. As + * we want to return output to user in compact form where no two + * consecutive regions should be continuous and have the same flags. + * So store the latest element in p.cur between different walks and + * store the p.cur at the end of the walk to the user buffer. + */ + if (IS_PM_SCAN_GET(p.flags)) { + p.vec = kmalloc_array(p.vec_len, sizeof(*p.vec), GFP_KERNEL); + if (!p.vec) + return -ENOMEM; + } + + if (IS_PM_SCAN_WP(p.flags)) { + mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0, + mm, start, end); + mmu_notifier_invalidate_range_start(&range); + } + + walk_start = walk_end = start; + while (walk_end < end && !ret) { + if (IS_PM_SCAN_GET(p.flags)) { + p.vec_index = 0; + + empty_slots = arg.vec_len - vec_index; + p.vec_len = min(p.vec_len, empty_slots); + } + + walk_end = (walk_start + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; + if (walk_end > end) + walk_end = end; + + ret = mmap_read_lock_killable(mm); + if (ret) + goto free_data; + ret = walk_page_range(mm, walk_start, walk_end, + &pagemap_scan_ops, &p); + mmap_read_unlock(mm); + + if (ret && ret != -ENOSPC && ret != PM_SCAN_FOUND_MAX_PAGES) + goto free_data; + + walk_start = walk_end; + if (IS_PM_SCAN_GET(p.flags) && p.vec_index) { + if (copy_to_user(&vec[vec_index], p.vec, + p.vec_index * sizeof(*p.vec))) { + /* + * Return error even though the OP succeeded + */ + ret = -EFAULT; + goto free_data; + } + vec_index += p.vec_index; + } + } + + if (IS_PM_SCAN_GET(p.flags) && p.cur.len) { + if (copy_to_user(&vec[vec_index], &p.cur, sizeof(*p.vec))) { + ret = -EFAULT; + goto free_data; + } + vec_index++; + } + + ret = vec_index; + +free_data: + if (IS_PM_SCAN_WP(p.flags)) + mmu_notifier_invalidate_range_end(&range); + + kfree(p.vec); + return ret; +} + +static long do_pagemap_cmd(struct file *file, unsigned int cmd, + unsigned long arg) +{ + struct pm_scan_arg __user *uarg = (struct pm_scan_arg __user *)arg; + struct mm_struct *mm = file->private_data; + + switch (cmd) { + case PAGEMAP_SCAN: + return do_pagemap_scan(mm, uarg); + + default: + return -EINVAL; + } +} + const struct file_operations proc_pagemap_operations = { .llseek = mem_lseek, /* borrow this */ .read = pagemap_read, .open = pagemap_open, .release = pagemap_release, + .unlocked_ioctl = do_pagemap_cmd, + .compat_ioctl = do_pagemap_cmd, }; #endif /* CONFIG_PROC_PAGE_MONITOR */
diff --git a/include/linux/hugetlb.h b/include/linux/hugetlb.h index 21f942025fec..e067a944fe77 100644 --- a/include/linux/hugetlb.h +++ b/include/linux/hugetlb.h @@ -261,6 +261,7 @@ long hugetlb_change_protection(struct vm_area_struct *vma, unsigned long cp_flags);
bool is_hugetlb_entry_migration(pte_t pte); +bool is_hugetlb_entry_hwpoisoned(pte_t pte); void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
#else /* !CONFIG_HUGETLB_PAGE */ diff --git a/include/uapi/linux/fs.h b/include/uapi/linux/fs.h index b7b56871029c..47879c38ce2f 100644 --- a/include/uapi/linux/fs.h +++ b/include/uapi/linux/fs.h @@ -305,4 +305,57 @@ typedef int __bitwise __kernel_rwf_t; #define RWF_SUPPORTED (RWF_HIPRI | RWF_DSYNC | RWF_SYNC | RWF_NOWAIT |\ RWF_APPEND)
+/* Pagemap ioctl */ +#define PAGEMAP_SCAN _IOWR('f', 16, struct pm_scan_arg) + +/* Bits are set in the bitmap of the page_region and masks in pm_scan_args */ +#define PAGE_IS_WRITTEN (1 << 0) +#define PAGE_IS_FILE (1 << 1) +#define PAGE_IS_PRESENT (1 << 2) +#define PAGE_IS_SWAPPED (1 << 3) + +/* + * struct page_region - Page region with bitmap flags + * @start: Start of the region + * @len: Length of the region in pages + * bitmap: Bits sets for the region + */ +struct page_region { + __u64 start; + __u64 len; + __u64 bitmap; +}; + +/* + * struct pm_scan_arg - Pagemap ioctl argument + * @size: Size of the structure + * @flags: Flags for the IOCTL + * @start: Starting address of the region + * @len: Length of the region (All the pages in this length are included) + * @vec: Address of page_region struct array for output + * @vec_len: Length of the page_region struct array + * @max_pages: Optional max return pages + * @required_mask: Required mask - All of these bits have to be set in the PTE + * @anyof_mask: Any mask - Any of these bits are set in the PTE + * @excluded_mask: Exclude mask - None of these bits are set in the PTE + * @return_mask: Bits that are to be reported in page_region + */ +struct pm_scan_arg { + __u64 size; + __u64 flags; + __u64 start; + __u64 len; + __u64 vec; + __u64 vec_len; + __u64 max_pages; + __u64 required_mask; + __u64 anyof_mask; + __u64 excluded_mask; + __u64 return_mask; +}; + +/* Supported flags */ +#define PM_SCAN_OP_GET (1 << 0) +#define PM_SCAN_OP_WP (1 << 1) + #endif /* _UAPI_LINUX_FS_H */ diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 2b8559f9c1e2..e7711055fea0 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -4983,7 +4983,7 @@ bool is_hugetlb_entry_migration(pte_t pte) return false; }
-static bool is_hugetlb_entry_hwpoisoned(pte_t pte) +bool is_hugetlb_entry_hwpoisoned(pte_t pte) { swp_entry_t swp;
Hi Muhammad,
kernel test robot noticed the following build errors:
[auto build test ERROR on akpm-mm/mm-everything] [also build test ERROR on next-20230606] [cannot apply to linus/master v6.4-rc5] [If your patch is applied to the wrong git tree, kindly drop us a note. And when submitting patch, we suggest to use '--base' as documented in https://git-scm.com/docs/git-format-patch#_base_tree_information]
url: https://github.com/intel-lab-lkp/linux/commits/Muhammad-Usama-Anjum/userfaul... base: https://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm.git mm-everything patch link: https://lore.kernel.org/r/20230606060822.1065182-3-usama.anjum%40collabora.c... patch subject: [PATCH v17 2/5] fs/proc/task_mmu: Implement IOCTL to get and optionally clear info about PTEs config: arc-allyesconfig (https://download.01.org/0day-ci/archive/20230607/202306070414.XDn2ITuw-lkp@i...) compiler: arceb-elf-gcc (GCC) 12.3.0 reproduce (this is a W=1 build): mkdir -p ~/bin wget https://raw.githubusercontent.com/intel/lkp-tests/master/sbin/make.cross -O ~/bin/make.cross chmod +x ~/bin/make.cross git remote add akpm-mm https://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm.git git fetch akpm-mm mm-everything git checkout akpm-mm/mm-everything b4 shazam https://lore.kernel.org/r/20230606060822.1065182-3-usama.anjum@collabora.com # save the config file mkdir build_dir && cp config build_dir/.config COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-12.3.0 ~/bin/make.cross W=1 O=build_dir ARCH=arc olddefconfig COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-12.3.0 ~/bin/make.cross W=1 O=build_dir ARCH=arc SHELL=/bin/bash
If you fix the issue, kindly add following tag where applicable | Reported-by: kernel test robot lkp@intel.com | Closes: https://lore.kernel.org/oe-kbuild-all/202306070414.XDn2ITuw-lkp@intel.com/
All errors (new ones prefixed by >>):
fs/proc/task_mmu.c: In function 'pagemap_scan_pmd_entry':
fs/proc/task_mmu.c:1960:31: error: 'HPAGE_SIZE' undeclared (first use in this function); did you mean 'PAGE_SIZE'?
1960 | n_pages < HPAGE_SIZE/PAGE_SIZE) { | ^~~~~~~~~~ | PAGE_SIZE fs/proc/task_mmu.c:1960:31: note: each undeclared identifier is reported only once for each function it appears in
vim +1960 fs/proc/task_mmu.c
1931 1932 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start, 1933 unsigned long end, struct mm_walk *walk) 1934 { 1935 struct pagemap_scan_private *p = walk->private; 1936 struct vm_area_struct *vma = walk->vma; 1937 unsigned long addr = end; 1938 pte_t *pte, *orig_pte; 1939 spinlock_t *ptl; 1940 bool is_written; 1941 int ret = 0; 1942 1943 arch_enter_lazy_mmu_mode(); 1944 1945 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1946 ptl = pmd_trans_huge_lock(pmd, vma); 1947 if (ptl) { 1948 unsigned long n_pages = (end - start)/PAGE_SIZE; 1949 1950 if (p->max_pages && n_pages > p->max_pages - p->found_pages) 1951 n_pages = p->max_pages - p->found_pages; 1952 1953 is_written = !is_pmd_uffd_wp(*pmd); 1954 1955 /* 1956 * Break huge page into small pages if the WP operation need to 1957 * be performed is on a portion of the huge page. 1958 */ 1959 if (is_written && IS_PM_SCAN_WP(p->flags) &&
1960 n_pages < HPAGE_SIZE/PAGE_SIZE) {
1961 spin_unlock(ptl); 1962 1963 split_huge_pmd(vma, pmd, start); 1964 goto process_smaller_pages; 1965 } 1966 1967 if (IS_PM_SCAN_GET(p->flags)) 1968 ret = pagemap_scan_output(is_written, vma->vm_file, 1969 pmd_present(*pmd), 1970 is_swap_pmd(*pmd), 1971 p, start, n_pages); 1972 1973 if (ret >= 0 && is_written && IS_PM_SCAN_WP(p->flags)) 1974 make_uffd_wp_pmd(vma, addr, pmd); 1975 1976 if (IS_PM_SCAN_WP(p->flags)) 1977 flush_tlb_range(vma, start, end); 1978 1979 spin_unlock(ptl); 1980 1981 arch_leave_lazy_mmu_mode(); 1982 return ret; 1983 } 1984 1985 process_smaller_pages: 1986 if (pmd_trans_unstable(pmd)) { 1987 arch_leave_lazy_mmu_mode(); 1988 walk->action = ACTION_AGAIN; 1989 return 0; 1990 } 1991 #endif 1992 1993 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl); 1994 for (addr = start; addr < end && !ret; pte++, addr += PAGE_SIZE) { 1995 is_written = !is_pte_uffd_wp(*pte); 1996 1997 if (IS_PM_SCAN_GET(p->flags)) 1998 ret = pagemap_scan_output(is_written, vma->vm_file, 1999 pte_present(*pte), 2000 is_swap_pte(*pte), 2001 p, addr, 1); 2002 2003 if (ret >= 0 && is_written && IS_PM_SCAN_WP(p->flags)) 2004 make_uffd_wp_pte(vma, addr, pte); 2005 } 2006 2007 if (IS_PM_SCAN_WP(p->flags)) 2008 flush_tlb_range(vma, start, addr); 2009 2010 pte_unmap_unlock(orig_pte, ptl); 2011 arch_leave_lazy_mmu_mode(); 2012 2013 cond_resched(); 2014 return ret; 2015 } 2016
On Tue, 6 Jun 2023 at 08:08, Muhammad Usama Anjum usama.anjum@collabora.com wrote:
This IOCTL, PAGEMAP_SCAN on pagemap file can be used to get and/or clear the info about page table entries. The following operations are supported in this ioctl:
- Get the information if the pages have been written-to (PAGE_IS_WRITTEN), file mapped (PAGE_IS_FILE), present (PAGE_IS_PRESENT) or swapped (PAGE_IS_SWAPPED).
- Find pages which have been written-to and/or write protect the pages (atomic PM_SCAN_OP_GET + PM_SCAN_OP_WP)
This IOCTL can be extended to get information about more PTE bits.
[...]
--- a/fs/proc/task_mmu.c +++ b/fs/proc/task_mmu.c
[...]
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static inline bool is_pmd_uffd_wp(pmd_t pmd) +{
return (pmd_present(pmd) && pmd_uffd_wp(pmd)) ||
(is_swap_pmd(pmd) && pmd_swp_uffd_wp(pmd));
+}
[...]
+#ifdef CONFIG_HUGETLB_PAGE +static inline bool is_huge_pte_uffd_wp(pte_t pte) +{
return ((pte_present(pte) && huge_pte_uffd_wp(pte)) ||
pte_swp_uffd_wp_any(pte));
Nit: please remove the outer parentheses (it is already done for similar finctuons above).
+}
+static inline bool pagemap_scan_check_page_written(struct pagemap_scan_private *p) +{
return (p->required_mask | p->anyof_mask | p->excluded_mask) &
PAGE_IS_WRITTEN;
+}
This could be precalculated and put as a flag into pagemap_scan_private - it is kernel-private structure and there are a few spare bits in `flags` if you'd prefer not to add an explicit boolean.
[...]
+static int pagemap_scan_output(bool wt, bool file, bool pres, bool swap,
struct pagemap_scan_private *p,
unsigned long addr, unsigned int n_pages)
+{
unsigned long bitmap = PM_SCAN_BITMAP(wt, file, pres, swap);
struct page_region *cur = &p->cur;
if (!n_pages)
return -EINVAL;
if ((p->required_mask & bitmap) != p->required_mask)
return 0;
if (p->anyof_mask && !(p->anyof_mask & bitmap))
return 0;
if (p->excluded_mask & bitmap)
return 0;
bitmap &= p->return_mask;
if (!bitmap)
return 0;
if (cur->bitmap == bitmap &&
cur->start + cur->len * PAGE_SIZE == addr) {
cur->len += n_pages;
p->found_pages += n_pages;
} else {
/*
* All data is copied to cur first. When more data is found, we
* push cur to vec and copy new data to cur. The vec_index
* represents the current index of vec array. We add 1 to the
* vec_index while performing checks to account for data in cur.
*/
if (cur->len && (p->vec_index + 1) >= p->vec_len)
return -ENOSPC;
if (cur->len) {
memcpy(&p->vec[p->vec_index], cur, sizeof(*p->vec));
p->vec_index++;
}
cur->start = addr;
cur->len = n_pages;
cur->bitmap = bitmap;
p->found_pages += n_pages;
}
if (p->max_pages && (p->found_pages == p->max_pages))
return PM_SCAN_FOUND_MAX_PAGES;
return 0;
+}
+static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
unsigned long end, struct mm_walk *walk)
+{
struct pagemap_scan_private *p = walk->private;
struct vm_area_struct *vma = walk->vma;
unsigned long addr = end;
pte_t *pte, *orig_pte;
spinlock_t *ptl;
bool is_written;
int ret = 0;
arch_enter_lazy_mmu_mode();
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
unsigned long n_pages = (end - start)/PAGE_SIZE;
if (p->max_pages && n_pages > p->max_pages - p->found_pages)
n_pages = p->max_pages - p->found_pages;
Since p->found_pages is only ever increased in `pagemap_scan_output()` and that function is only called for GET or GET+WP operations, maybe the logic could be folded to pagemap_scan_output() to avoid duplication? In this function the calculation is used only when WP op is done to split the HP if n_pages limit would be hit, but if using plain WP (without GET) it doesn't make sense to use the limit. (pagemap_scan_output() is trivial enough so I think it could be pulled inside the spinlocked region.)
is_written = !is_pmd_uffd_wp(*pmd);
/*
* Break huge page into small pages if the WP operation need to
* be performed is on a portion of the huge page.
*/
if (is_written && IS_PM_SCAN_WP(p->flags) &&
n_pages < HPAGE_SIZE/PAGE_SIZE) {
spin_unlock(ptl);
split_huge_pmd(vma, pmd, start);
goto process_smaller_pages;
}
if (IS_PM_SCAN_GET(p->flags))
ret = pagemap_scan_output(is_written, vma->vm_file,
pmd_present(*pmd),
is_swap_pmd(*pmd),
p, start, n_pages);
if (ret >= 0 && is_written && IS_PM_SCAN_WP(p->flags))
make_uffd_wp_pmd(vma, addr, pmd);
if (IS_PM_SCAN_WP(p->flags))
Why `is_written` is not checked? If is_written is false, then the WP op should be a no-op and so won't need TLB flushing, will it? [Same for the PTE case below.]
flush_tlb_range(vma, start, end);
[...]
if (IS_PM_SCAN_WP(p->flags))
flush_tlb_range(vma, start, addr);
pte_unmap_unlock(orig_pte, ptl);
arch_leave_lazy_mmu_mode();
cond_resched();
return ret;
+}
+#ifdef CONFIG_HUGETLB_PAGE +static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
unsigned long start, unsigned long end,
struct mm_walk *walk)
+{
unsigned long n_pages = (end - start)/PAGE_SIZE;
struct pagemap_scan_private *p = walk->private;
struct vm_area_struct *vma = walk->vma;
struct hstate *h = hstate_vma(vma);
spinlock_t *ptl;
bool is_written;
int ret = 0;
pte_t pte;
if (p->max_pages && n_pages > p->max_pages - p->found_pages)
n_pages = p->max_pages - p->found_pages;
if (IS_PM_SCAN_WP(p->flags)) {
i_mmap_lock_write(vma->vm_file->f_mapping);
ptl = huge_pte_lock(h, vma->vm_mm, ptep);
}
pte = huge_ptep_get(ptep);
is_written = !is_huge_pte_uffd_wp(pte);
/*
* Partial hugetlb page clear isn't supported
*/
if (is_written && IS_PM_SCAN_WP(p->flags) &&
n_pages < HPAGE_SIZE/PAGE_SIZE) {
ret = -EPERM;
Shouldn't this be ENOSPC, conveying that the operation would overflow the n_pages limit?
goto unlock_and_return;
}
if (IS_PM_SCAN_GET(p->flags)) {
ret = pagemap_scan_output(is_written, vma->vm_file,
pte_present(pte), is_swap_pte(pte),
p, start, n_pages);
if (ret < 0)
goto unlock_and_return;
}
if (is_written && IS_PM_SCAN_WP(p->flags)) {
Oh, this case does check `is_written` before flushing TLB, contrary to what the cases above do.
make_uffd_wp_huge_pte(vma, start, ptep, pte);
flush_hugetlb_tlb_range(vma, start, end);
}
+unlock_and_return:
if (IS_PM_SCAN_WP(p->flags)) {
spin_unlock(ptl);
i_mmap_unlock_write(vma->vm_file->f_mapping);
}
return ret;
+} +#else +#define pagemap_scan_hugetlb_entry NULL +#endif
+static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
int depth, struct mm_walk *walk)
+{
unsigned long n_pages = (end - addr)/PAGE_SIZE;
struct pagemap_scan_private *p = walk->private;
struct vm_area_struct *vma = walk->vma;
int ret = 0;
if (!vma || !IS_PM_SCAN_GET(p->flags))
return 0;
if (p->max_pages && n_pages > p->max_pages - p->found_pages)
n_pages = p->max_pages - p->found_pages;
Nit: If the page flags don't match (wouldn't be output), the limit would not be hit and the calculation is unnecessary. But if it was done in pagemap_scan_output() instead after all the flags checks...
ret = pagemap_scan_output(false, vma->vm_file, false, false, p, addr,
n_pages);
return ret;
+}
[...]
+static long do_pagemap_scan(struct mm_struct *mm,
struct pm_scan_arg __user *uarg)
+{
unsigned long start, end, walk_start, walk_end;
unsigned long empty_slots, vec_index = 0;
struct mmu_notifier_range range;
struct page_region __user *vec;
struct pagemap_scan_private p;
struct pm_scan_arg arg;
int ret = 0;
if (copy_from_user(&arg, uarg, sizeof(arg)))
return -EFAULT;
start = untagged_addr((unsigned long)arg.start);
vec = (struct page_region *)untagged_addr((unsigned long)arg.vec);
ret = pagemap_scan_args_valid(&arg, start, vec);
if (ret)
return ret;
end = start + arg.len;
p.max_pages = arg.max_pages;
p.found_pages = 0;
p.flags = arg.flags;
p.required_mask = arg.required_mask;
p.anyof_mask = arg.anyof_mask;
p.excluded_mask = arg.excluded_mask;
p.return_mask = arg.return_mask;
p.cur.start = p.cur.len = p.cur.bitmap = 0;
p.vec = NULL;
p.vec_len = PAGEMAP_WALK_SIZE >> PAGE_SHIFT;
If p.vec_len would not count the entry held in `cur` (IOW: vec_len = WALK_SIZE - 1), then pagemap_scan_output() wouldn't need the big comment about adding or subtracting 1 when checking for overflow. The output vector needs to have space for at least one entrry to make GET useful. Maybe `cur` could be renamed or annotated to express that it always holds the last entry?
/*
* Allocate smaller buffer to get output from inside the page walk
* functions and walk page range in PAGEMAP_WALK_SIZE size chunks. As
* we want to return output to user in compact form where no two
* consecutive regions should be continuous and have the same flags.
* So store the latest element in p.cur between different walks and
* store the p.cur at the end of the walk to the user buffer.
*/
if (IS_PM_SCAN_GET(p.flags)) {
p.vec = kmalloc_array(p.vec_len, sizeof(*p.vec), GFP_KERNEL);
if (!p.vec)
return -ENOMEM;
}
if (IS_PM_SCAN_WP(p.flags)) {
mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
mm, start, end);
mmu_notifier_invalidate_range_start(&range);
}
walk_start = walk_end = start;
while (walk_end < end && !ret) {
if (IS_PM_SCAN_GET(p.flags)) {
p.vec_index = 0;
empty_slots = arg.vec_len - vec_index;
Can `empty_slots` be zero here? I don't see anything prohibiting this case.
p.vec_len = min(p.vec_len, empty_slots);
( If not counting `cur`, it would be min(p.vec_len, empty_slots - 1); )
}
walk_end = (walk_start + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
if (walk_end > end)
walk_end = end;
ret = mmap_read_lock_killable(mm);
if (ret)
goto free_data;
ret = walk_page_range(mm, walk_start, walk_end,
&pagemap_scan_ops, &p);
mmap_read_unlock(mm);
if (ret && ret != -ENOSPC && ret != PM_SCAN_FOUND_MAX_PAGES)
goto free_data;
walk_start = walk_end;
if (IS_PM_SCAN_GET(p.flags) && p.vec_index) {
if (copy_to_user(&vec[vec_index], p.vec,
p.vec_index * sizeof(*p.vec))) {
/*
* Return error even though the OP succeeded
*/
ret = -EFAULT;
goto free_data;
}
vec_index += p.vec_index;
}
}
if (IS_PM_SCAN_GET(p.flags) && p.cur.len) {
Nit: p.cur.len can be non-zero only if we do a GET (or GET+WP) operation.
if (copy_to_user(&vec[vec_index], &p.cur, sizeof(*p.vec))) {
Nit: sizeof(*p.cur); (even though this is the same type)
ret = -EFAULT;
goto free_data;
}
vec_index++;
}
ret = vec_index;
+free_data:
if (IS_PM_SCAN_WP(p.flags))
mmu_notifier_invalidate_range_end(&range);
kfree(p.vec);
return ret;
+}
+static long do_pagemap_cmd(struct file *file, unsigned int cmd,
unsigned long arg)
+{
struct pm_scan_arg __user *uarg = (struct pm_scan_arg __user *)arg;
The cast should be in do_pagemap_scan() as if there comes another `cmd`, then it might use a different argument type.
struct mm_struct *mm = file->private_data;
switch (cmd) {
case PAGEMAP_SCAN:
return do_pagemap_scan(mm, uarg);
default:
return -EINVAL;
}
+}
Best Regards Michał Mirosław
Hi Michał,
Thank you for taking time to review!
On 6/7/23 7:52 PM, Michał Mirosław wrote:
On Tue, 6 Jun 2023 at 08:08, Muhammad Usama Anjum usama.anjum@collabora.com wrote:
This IOCTL, PAGEMAP_SCAN on pagemap file can be used to get and/or clear the info about page table entries. The following operations are supported in this ioctl:
- Get the information if the pages have been written-to (PAGE_IS_WRITTEN), file mapped (PAGE_IS_FILE), present (PAGE_IS_PRESENT) or swapped (PAGE_IS_SWAPPED).
- Find pages which have been written-to and/or write protect the pages (atomic PM_SCAN_OP_GET + PM_SCAN_OP_WP)
This IOCTL can be extended to get information about more PTE bits.
[...]
--- a/fs/proc/task_mmu.c +++ b/fs/proc/task_mmu.c
[...]
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static inline bool is_pmd_uffd_wp(pmd_t pmd) +{
return (pmd_present(pmd) && pmd_uffd_wp(pmd)) ||
(is_swap_pmd(pmd) && pmd_swp_uffd_wp(pmd));
+}
[...]
+#ifdef CONFIG_HUGETLB_PAGE +static inline bool is_huge_pte_uffd_wp(pte_t pte) +{
return ((pte_present(pte) && huge_pte_uffd_wp(pte)) ||
pte_swp_uffd_wp_any(pte));
Nit: please remove the outer parentheses (it is already done for similar finctuons above).
Will remove.
+}
+static inline bool pagemap_scan_check_page_written(struct pagemap_scan_private *p) +{
return (p->required_mask | p->anyof_mask | p->excluded_mask) &
PAGE_IS_WRITTEN;
+}
This could be precalculated and put as a flag into pagemap_scan_private - it is kernel-private structure and there are a few spare bits in `flags` if you'd prefer not to add an explicit boolean.
This inline function is only being used at one spot. I can remove the function altogether. I don't like putting it in flags. It'll bring some complexity.
[...]
+static int pagemap_scan_output(bool wt, bool file, bool pres, bool swap,
struct pagemap_scan_private *p,
unsigned long addr, unsigned int n_pages)
+{
unsigned long bitmap = PM_SCAN_BITMAP(wt, file, pres, swap);
struct page_region *cur = &p->cur;
if (!n_pages)
return -EINVAL;
if ((p->required_mask & bitmap) != p->required_mask)
return 0;
if (p->anyof_mask && !(p->anyof_mask & bitmap))
return 0;
if (p->excluded_mask & bitmap)
return 0;
bitmap &= p->return_mask;
if (!bitmap)
return 0;
if (cur->bitmap == bitmap &&
cur->start + cur->len * PAGE_SIZE == addr) {
cur->len += n_pages;
p->found_pages += n_pages;
} else {
/*
* All data is copied to cur first. When more data is found, we
* push cur to vec and copy new data to cur. The vec_index
* represents the current index of vec array. We add 1 to the
* vec_index while performing checks to account for data in cur.
*/
if (cur->len && (p->vec_index + 1) >= p->vec_len)
return -ENOSPC;
if (cur->len) {
memcpy(&p->vec[p->vec_index], cur, sizeof(*p->vec));
p->vec_index++;
}
cur->start = addr;
cur->len = n_pages;
cur->bitmap = bitmap;
p->found_pages += n_pages;
}
if (p->max_pages && (p->found_pages == p->max_pages))
return PM_SCAN_FOUND_MAX_PAGES;
return 0;
+}
+static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
unsigned long end, struct mm_walk *walk)
+{
struct pagemap_scan_private *p = walk->private;
struct vm_area_struct *vma = walk->vma;
unsigned long addr = end;
pte_t *pte, *orig_pte;
spinlock_t *ptl;
bool is_written;
int ret = 0;
arch_enter_lazy_mmu_mode();
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
unsigned long n_pages = (end - start)/PAGE_SIZE;
if (p->max_pages && n_pages > p->max_pages - p->found_pages)
n_pages = p->max_pages - p->found_pages;
Since p->found_pages is only ever increased in `pagemap_scan_output()` and that function is only called for GET or GET+WP operations, maybe the logic could be folded to pagemap_scan_output() to avoid duplication? In this function the calculation is used only when WP op is done to split the HP if n_pages limit would be hit, but if using plain WP (without GET) it doesn't make sense to use the limit.
The n_pages is needed to decide if THP need to be broken down and it is used in pagemap_scan_output(). I've brought this condition out of pagemap_scan_output() to cater this former condition. If I move it to pagemap_scan_output(), I'll have to write same condition to find out if I need to breakt he THP. This seems like repetition, but we have same use case for tlbhuge page.
(pagemap_scan_output() is trivial enough so I think it could be pulled inside the spinlocked region.)
It is already in spinlocked region. Spin lock is being released after tlb flush.
is_written = !is_pmd_uffd_wp(*pmd);
/*
* Break huge page into small pages if the WP operation need to
* be performed is on a portion of the huge page.
*/
if (is_written && IS_PM_SCAN_WP(p->flags) &&
n_pages < HPAGE_SIZE/PAGE_SIZE) {
spin_unlock(ptl);
split_huge_pmd(vma, pmd, start);
goto process_smaller_pages;
}
if (IS_PM_SCAN_GET(p->flags))
ret = pagemap_scan_output(is_written, vma->vm_file,
pmd_present(*pmd),
is_swap_pmd(*pmd),
p, start, n_pages);
if (ret >= 0 && is_written && IS_PM_SCAN_WP(p->flags))
make_uffd_wp_pmd(vma, addr, pmd);
if (IS_PM_SCAN_WP(p->flags))
Why `is_written` is not checked? If is_written is false, then the WP op should be a no-op and so won't need TLB flushing, will it? [Same for the PTE case below.]
It can be done for THP. But for ptes we cannot trust is_written as is_written only represent last pte state.
flush_tlb_range(vma, start, end);
[...]
if (IS_PM_SCAN_WP(p->flags))
flush_tlb_range(vma, start, addr);
pte_unmap_unlock(orig_pte, ptl);
arch_leave_lazy_mmu_mode();
cond_resched();
return ret;
+}
+#ifdef CONFIG_HUGETLB_PAGE +static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
unsigned long start, unsigned long end,
struct mm_walk *walk)
+{
unsigned long n_pages = (end - start)/PAGE_SIZE;
struct pagemap_scan_private *p = walk->private;
struct vm_area_struct *vma = walk->vma;
struct hstate *h = hstate_vma(vma);
spinlock_t *ptl;
bool is_written;
int ret = 0;
pte_t pte;
if (p->max_pages && n_pages > p->max_pages - p->found_pages)
n_pages = p->max_pages - p->found_pages;
if (IS_PM_SCAN_WP(p->flags)) {
i_mmap_lock_write(vma->vm_file->f_mapping);
ptl = huge_pte_lock(h, vma->vm_mm, ptep);
}
pte = huge_ptep_get(ptep);
is_written = !is_huge_pte_uffd_wp(pte);
/*
* Partial hugetlb page clear isn't supported
*/
if (is_written && IS_PM_SCAN_WP(p->flags) &&
n_pages < HPAGE_SIZE/PAGE_SIZE) {
ret = -EPERM;
Shouldn't this be ENOSPC, conveying that the operation would overflow the n_pages limit?
We are testing here is user has asked us to engage WP on a part of the hugetlb or we can only perform WP on a part of the engage as user buffer is full. We cannot judge this has happened because of the former or later condition. So I'm assuming that user's parameters aren't solid enough and returning -EPERM. It seemed more suitable to me. But I can return -ENOSPC as well, if you say?
goto unlock_and_return;
}
if (IS_PM_SCAN_GET(p->flags)) {
ret = pagemap_scan_output(is_written, vma->vm_file,
pte_present(pte), is_swap_pte(pte),
p, start, n_pages);
if (ret < 0)
goto unlock_and_return;
}
if (is_written && IS_PM_SCAN_WP(p->flags)) {
Oh, this case does check `is_written` before flushing TLB, contrary to what the cases above do.
make_uffd_wp_huge_pte(vma, start, ptep, pte);
flush_hugetlb_tlb_range(vma, start, end);
}
+unlock_and_return:
if (IS_PM_SCAN_WP(p->flags)) {
spin_unlock(ptl);
i_mmap_unlock_write(vma->vm_file->f_mapping);
}
return ret;
+} +#else +#define pagemap_scan_hugetlb_entry NULL +#endif
+static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
int depth, struct mm_walk *walk)
+{
unsigned long n_pages = (end - addr)/PAGE_SIZE;
struct pagemap_scan_private *p = walk->private;
struct vm_area_struct *vma = walk->vma;
int ret = 0;
if (!vma || !IS_PM_SCAN_GET(p->flags))
return 0;
if (p->max_pages && n_pages > p->max_pages - p->found_pages)
n_pages = p->max_pages - p->found_pages;
Nit: If the page flags don't match (wouldn't be output), the limit would not be hit and the calculation is unnecessary. But if it was done in pagemap_scan_output() instead after all the flags checks...
Correct for this use case. But moving to pagemap_scan_output() would make me do duplicate calculation for other 2 cases as explained above.
ret = pagemap_scan_output(false, vma->vm_file, false, false, p, addr,
n_pages);
return ret;
+}
[...]
+static long do_pagemap_scan(struct mm_struct *mm,
struct pm_scan_arg __user *uarg)
+{
unsigned long start, end, walk_start, walk_end;
unsigned long empty_slots, vec_index = 0;
struct mmu_notifier_range range;
struct page_region __user *vec;
struct pagemap_scan_private p;
struct pm_scan_arg arg;
int ret = 0;
if (copy_from_user(&arg, uarg, sizeof(arg)))
return -EFAULT;
start = untagged_addr((unsigned long)arg.start);
vec = (struct page_region *)untagged_addr((unsigned long)arg.vec);
ret = pagemap_scan_args_valid(&arg, start, vec);
if (ret)
return ret;
end = start + arg.len;
p.max_pages = arg.max_pages;
p.found_pages = 0;
p.flags = arg.flags;
p.required_mask = arg.required_mask;
p.anyof_mask = arg.anyof_mask;
p.excluded_mask = arg.excluded_mask;
p.return_mask = arg.return_mask;
p.cur.start = p.cur.len = p.cur.bitmap = 0;
p.vec = NULL;
p.vec_len = PAGEMAP_WALK_SIZE >> PAGE_SHIFT;
If p.vec_len would not count the entry held in `cur` (IOW: vec_len = WALK_SIZE - 1), then pagemap_scan_output() wouldn't need the big comment about adding or subtracting 1 when checking for overflow. The output vector needs to have space for at least one entrry to make GET useful. Maybe `cur` could be renamed or annotated to express that it always holds the last entry?
Ohhh.. This can be done by doing subtracting 1 from empty_slots. But I've explored the idea. I don't see any benefit. If we do this, then I'll have to put a comment why subtracting 1 is needed. Seems like same problem:
--- a/fs/proc/task_mmu.c +++ b/fs/proc/task_mmu.c @@ -1909,7 +1909,7 @@ static int pagemap_scan_output(bool wt, bool file, bool pres, bool swap, * represents the current index of vec array. We add 1 to the * vec_index while performing checks to account for data in cur. */ - if (cur->len && (p->vec_index + 1) >= p->vec_len) + if (cur->len && p->vec_index >= p->vec_len) return -ENOSPC;
if (cur->len) { @@ -2202,7 +2202,7 @@ static long do_pagemap_scan(struct mm_struct *mm, if (IS_PM_SCAN_GET(p.flags)) { p.vec_index = 0;
- empty_slots = arg.vec_len - vec_index; + empty_slots = arg.vec_len - 1 - vec_index; p.vec_len = min(p.vec_len, empty_slots); }
Lets leave it as it is. I can change `cur` to `last` or any other name. Please suggest.
/*
* Allocate smaller buffer to get output from inside the page walk
* functions and walk page range in PAGEMAP_WALK_SIZE size chunks. As
* we want to return output to user in compact form where no two
* consecutive regions should be continuous and have the same flags.
* So store the latest element in p.cur between different walks and
* store the p.cur at the end of the walk to the user buffer.
*/
if (IS_PM_SCAN_GET(p.flags)) {
p.vec = kmalloc_array(p.vec_len, sizeof(*p.vec), GFP_KERNEL);
if (!p.vec)
return -ENOMEM;
}
if (IS_PM_SCAN_WP(p.flags)) {
mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
mm, start, end);
mmu_notifier_invalidate_range_start(&range);
}
walk_start = walk_end = start;
while (walk_end < end && !ret) {
if (IS_PM_SCAN_GET(p.flags)) {
p.vec_index = 0;
empty_slots = arg.vec_len - vec_index;
Can `empty_slots` be zero here? I don't see anything prohibiting this case.
I'll add a check here and abort the loop here instead of continuing the operation.
p.vec_len = min(p.vec_len, empty_slots);
( If not counting `cur`, it would be min(p.vec_len, empty_slots - 1); )
}
walk_end = (walk_start + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
if (walk_end > end)
walk_end = end;
ret = mmap_read_lock_killable(mm);
if (ret)
goto free_data;
ret = walk_page_range(mm, walk_start, walk_end,
&pagemap_scan_ops, &p);
mmap_read_unlock(mm);
if (ret && ret != -ENOSPC && ret != PM_SCAN_FOUND_MAX_PAGES)
goto free_data;
walk_start = walk_end;
if (IS_PM_SCAN_GET(p.flags) && p.vec_index) {
if (copy_to_user(&vec[vec_index], p.vec,
p.vec_index * sizeof(*p.vec))) {
/*
* Return error even though the OP succeeded
*/
ret = -EFAULT;
goto free_data;
}
vec_index += p.vec_index;
}
}
if (IS_PM_SCAN_GET(p.flags) && p.cur.len) {
Nit: p.cur.len can be non-zero only if we do a GET (or GET+WP) operation.
I'll remove the first half of condition.
if (copy_to_user(&vec[vec_index], &p.cur, sizeof(*p.vec))) {
Nit: sizeof(*p.cur); (even though this is the same type)
Good point.
ret = -EFAULT;
goto free_data;
}
vec_index++;
}
ret = vec_index;
+free_data:
if (IS_PM_SCAN_WP(p.flags))
mmu_notifier_invalidate_range_end(&range);
kfree(p.vec);
return ret;
+}
+static long do_pagemap_cmd(struct file *file, unsigned int cmd,
unsigned long arg)
+{
struct pm_scan_arg __user *uarg = (struct pm_scan_arg __user *)arg;
The cast should be in do_pagemap_scan() as if there comes another `cmd`, then it might use a different argument type.
I'll update.
struct mm_struct *mm = file->private_data;
switch (cmd) {
case PAGEMAP_SCAN:
return do_pagemap_scan(mm, uarg);
default:
return -EINVAL;
}
+}
Best Regards Michał Mirosław
On Wed, 7 Jun 2023 at 18:13, Muhammad Usama Anjum usama.anjum@collabora.com wrote:
Hi Michał,
Thank you for taking time to review!
On 6/7/23 7:52 PM, Michał Mirosław wrote:
On Tue, 6 Jun 2023 at 08:08, Muhammad Usama Anjum usama.anjum@collabora.com wrote:
This IOCTL, PAGEMAP_SCAN on pagemap file can be used to get and/or clear the info about page table entries. The following operations are supported in this ioctl:
- Get the information if the pages have been written-to (PAGE_IS_WRITTEN), file mapped (PAGE_IS_FILE), present (PAGE_IS_PRESENT) or swapped (PAGE_IS_SWAPPED).
- Find pages which have been written-to and/or write protect the pages (atomic PM_SCAN_OP_GET + PM_SCAN_OP_WP)
This IOCTL can be extended to get information about more PTE bits.
[...]
--- a/fs/proc/task_mmu.c +++ b/fs/proc/task_mmu.c
[...]
+static inline bool pagemap_scan_check_page_written(struct pagemap_scan_private *p) +{
return (p->required_mask | p->anyof_mask | p->excluded_mask) &
PAGE_IS_WRITTEN;
+}
This could be precalculated and put as a flag into pagemap_scan_private - it is kernel-private structure and there are a few spare bits in `flags` if you'd prefer not to add an explicit boolean.
This inline function is only being used at one spot. I can remove the function altogether. I don't like putting it in flags. It'll bring some complexity.
The difference at the call site will be function call vs field access. Do you mean that moving the function to where the struct is initialized would add complexity? Why is that?
[...]
+static int pagemap_scan_output(bool wt, bool file, bool pres, bool swap,
struct pagemap_scan_private *p,
unsigned long addr, unsigned int n_pages)
+{
unsigned long bitmap = PM_SCAN_BITMAP(wt, file, pres, swap);
struct page_region *cur = &p->cur;
if (!n_pages)
return -EINVAL;
if ((p->required_mask & bitmap) != p->required_mask)
return 0;
if (p->anyof_mask && !(p->anyof_mask & bitmap))
return 0;
if (p->excluded_mask & bitmap)
return 0;
bitmap &= p->return_mask;
if (!bitmap)
return 0;
if (cur->bitmap == bitmap &&
cur->start + cur->len * PAGE_SIZE == addr) {
cur->len += n_pages;
p->found_pages += n_pages;
} else {
/*
* All data is copied to cur first. When more data is found, we
* push cur to vec and copy new data to cur. The vec_index
* represents the current index of vec array. We add 1 to the
* vec_index while performing checks to account for data in cur.
*/
if (cur->len && (p->vec_index + 1) >= p->vec_len)
return -ENOSPC;
if (cur->len) {
memcpy(&p->vec[p->vec_index], cur, sizeof(*p->vec));
p->vec_index++;
}
cur->start = addr;
cur->len = n_pages;
cur->bitmap = bitmap;
p->found_pages += n_pages;
}
if (p->max_pages && (p->found_pages == p->max_pages))
return PM_SCAN_FOUND_MAX_PAGES;
return 0;
+}
+static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
unsigned long end, struct mm_walk *walk)
+{
struct pagemap_scan_private *p = walk->private;
struct vm_area_struct *vma = walk->vma;
unsigned long addr = end;
pte_t *pte, *orig_pte;
spinlock_t *ptl;
bool is_written;
int ret = 0;
arch_enter_lazy_mmu_mode();
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
unsigned long n_pages = (end - start)/PAGE_SIZE;
if (p->max_pages && n_pages > p->max_pages - p->found_pages)
n_pages = p->max_pages - p->found_pages;
Since p->found_pages is only ever increased in `pagemap_scan_output()` and that function is only called for GET or GET+WP operations, maybe the logic could be folded to pagemap_scan_output() to avoid duplication? In this function the calculation is used only when WP op is done to split the HP if n_pages limit would be hit, but if using plain WP (without GET) it doesn't make sense to use the limit.
The n_pages is needed to decide if THP need to be broken down and it is used in pagemap_scan_output(). I've brought this condition out of pagemap_scan_output() to cater this former condition. If I move it to pagemap_scan_output(), I'll have to write same condition to find out if I need to breakt he THP. This seems like repetition, but we have same use case for tlbhuge page.
My point is that you need to split the THP only if doing a GET+WP operation. If you only do GET, then the worst case would be for the process to report a spurious WRITTEN bit if an earlier-visited part of THP was modified and the scan restarted in the middle of a THP.
(pagemap_scan_output() is trivial enough so I think it could be pulled
inside the spinlocked region.)
It is already in spinlocked region. Spin lock is being released after tlb flush.
Ah, I was thinking about calling pagemap_scan_output() before checking split_huge_pmd() case - and at that use the pagemap_scan_output()'s return value to do the check.
is_written = !is_pmd_uffd_wp(*pmd);
/*
* Break huge page into small pages if the WP operation need to
* be performed is on a portion of the huge page.
*/
if (is_written && IS_PM_SCAN_WP(p->flags) &&
n_pages < HPAGE_SIZE/PAGE_SIZE) {
spin_unlock(ptl);
split_huge_pmd(vma, pmd, start);
goto process_smaller_pages;
}
if (IS_PM_SCAN_GET(p->flags))
ret = pagemap_scan_output(is_written, vma->vm_file,
pmd_present(*pmd),
is_swap_pmd(*pmd),
p, start, n_pages);
if (ret >= 0 && is_written && IS_PM_SCAN_WP(p->flags))
make_uffd_wp_pmd(vma, addr, pmd);
if (IS_PM_SCAN_WP(p->flags))
Why `is_written` is not checked? If is_written is false, then the WP op should be a no-op and so won't need TLB flushing, will it? [Same for the PTE case below.]
It can be done for THP. But for ptes we cannot trust is_written as is_written only represent last pte state.
Ok, so the PTE case could use a flag recording whether any PTE had WP applied instead of `is_written`.
flush_tlb_range(vma, start, end);
[...]
if (IS_PM_SCAN_WP(p->flags))
flush_tlb_range(vma, start, addr);
pte_unmap_unlock(orig_pte, ptl);
arch_leave_lazy_mmu_mode();
cond_resched();
return ret;
+}
+#ifdef CONFIG_HUGETLB_PAGE +static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
unsigned long start, unsigned long end,
struct mm_walk *walk)
+{
unsigned long n_pages = (end - start)/PAGE_SIZE;
struct pagemap_scan_private *p = walk->private;
struct vm_area_struct *vma = walk->vma;
struct hstate *h = hstate_vma(vma);
spinlock_t *ptl;
bool is_written;
int ret = 0;
pte_t pte;
if (p->max_pages && n_pages > p->max_pages - p->found_pages)
n_pages = p->max_pages - p->found_pages;
if (IS_PM_SCAN_WP(p->flags)) {
i_mmap_lock_write(vma->vm_file->f_mapping);
ptl = huge_pte_lock(h, vma->vm_mm, ptep);
}
pte = huge_ptep_get(ptep);
is_written = !is_huge_pte_uffd_wp(pte);
/*
* Partial hugetlb page clear isn't supported
*/
if (is_written && IS_PM_SCAN_WP(p->flags) &&
n_pages < HPAGE_SIZE/PAGE_SIZE) {
ret = -EPERM;
Shouldn't this be ENOSPC, conveying that the operation would overflow the n_pages limit?
We are testing here is user has asked us to engage WP on a part of the hugetlb or we can only perform WP on a part of the engage as user buffer is full. We cannot judge this has happened because of the former or later condition. So I'm assuming that user's parameters aren't solid enough and returning -EPERM. It seemed more suitable to me. But I can return -ENOSPC as well, if you say?
Those two cases can be differentiated when checked before truncating n_pages. If a user requests partial WP for a hugetlb page wouldn't EINVAL (or other error - as this can't ever work) be more appropriate (this check could happen only at the start of scan)? If the request is due to max_pages limit (with found_pages > 0), then I'd return ENOSPC and expect the user to restart the scan with a new buffer.
Our discussion here makes me wonder: what is the expected return value for the ioctl WP (without GET) operation? If it would return e.g. the number of 4K-pages successfully scanned, then the caller would be able to detect the partial tail hugepage case and act accordingly.
+static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
int depth, struct mm_walk *walk)
+{
unsigned long n_pages = (end - addr)/PAGE_SIZE;
struct pagemap_scan_private *p = walk->private;
struct vm_area_struct *vma = walk->vma;
int ret = 0;
if (!vma || !IS_PM_SCAN_GET(p->flags))
return 0;
if (p->max_pages && n_pages > p->max_pages - p->found_pages)
n_pages = p->max_pages - p->found_pages;
Nit: If the page flags don't match (wouldn't be output), the limit would not be hit and the calculation is unnecessary. But if it was done in pagemap_scan_output() instead after all the flags checks...
Correct for this use case. But moving to pagemap_scan_output() would make me do duplicate calculation for other 2 cases as explained above.
(responded below the cases above)
ret = pagemap_scan_output(false, vma->vm_file, false, false, p, addr,
n_pages);
return ret;
+}
[...]
+static long do_pagemap_scan(struct mm_struct *mm,
struct pm_scan_arg __user *uarg)
+{
unsigned long start, end, walk_start, walk_end;
unsigned long empty_slots, vec_index = 0;
struct mmu_notifier_range range;
struct page_region __user *vec;
struct pagemap_scan_private p;
struct pm_scan_arg arg;
int ret = 0;
if (copy_from_user(&arg, uarg, sizeof(arg)))
return -EFAULT;
start = untagged_addr((unsigned long)arg.start);
vec = (struct page_region *)untagged_addr((unsigned long)arg.vec);
ret = pagemap_scan_args_valid(&arg, start, vec);
if (ret)
return ret;
end = start + arg.len;
p.max_pages = arg.max_pages;
p.found_pages = 0;
p.flags = arg.flags;
p.required_mask = arg.required_mask;
p.anyof_mask = arg.anyof_mask;
p.excluded_mask = arg.excluded_mask;
p.return_mask = arg.return_mask;
p.cur.start = p.cur.len = p.cur.bitmap = 0;
p.vec = NULL;
p.vec_len = PAGEMAP_WALK_SIZE >> PAGE_SHIFT;
If p.vec_len would not count the entry held in `cur` (IOW: vec_len = WALK_SIZE - 1), then pagemap_scan_output() wouldn't need the big comment about adding or subtracting 1 when checking for overflow. The output vector needs to have space for at least one entrry to make GET useful. Maybe `cur` could be renamed or annotated to express that it always holds the last entry?
Ohhh.. This can be done by doing subtracting 1 from empty_slots. But I've explored the idea. I don't see any benefit. If we do this, then I'll have to put a comment why subtracting 1 is needed. Seems like same problem:
--- a/fs/proc/task_mmu.c +++ b/fs/proc/task_mmu.c @@ -1909,7 +1909,7 @@ static int pagemap_scan_output(bool wt, bool file, bool pres, bool swap, * represents the current index of vec array. We add 1 to the * vec_index while performing checks to account for data in cur. */
if (cur->len && (p->vec_index + 1) >= p->vec_len)
if (cur->len && p->vec_index >= p->vec_len) return -ENOSPC; if (cur->len) {
@@ -2202,7 +2202,7 @@ static long do_pagemap_scan(struct mm_struct *mm, if (IS_PM_SCAN_GET(p.flags)) { p.vec_index = 0;
empty_slots = arg.vec_len - vec_index;
empty_slots = arg.vec_len - 1 - vec_index; p.vec_len = min(p.vec_len, empty_slots); }
Lets leave it as it is. I can change `cur` to `last` or any other name. Please suggest.
The difference is that you have the subtraction only once per the outer page_walk loop iteration, but in the current version the addition has to happen every pagemap_scan_output() call after a hole.
From the readability perspective, "if (next_index >= vec_len)" is short and self-documenting. Also I'd use "p.vec_len = min(p.vec_len, empty_slots - 1)" as it also conveys the intent better (in that `vec` is holding all but the last entry, but arg.vec_len holds the final output buffer length).
If we're picking colors, then maybe make `arg.vec_len` have a different name than `p.vec_len` (same for `vec_index`) so that there is less confusion possible as to what they refer to. Maybe keep `arg.vec_len`, but have `p.vec_buf`, `p.vec_buf_len`, and `p.next_buf_index`?
(Note: you'd also need to decrement p.vec_len where it is first assigned.)
[...] Best Regards Michał Mirosław
On 6/7/23 9:52 PM, Michał Mirosław wrote:
On Wed, 7 Jun 2023 at 18:13, Muhammad Usama Anjum usama.anjum@collabora.com wrote:
Hi Michał,
Thank you for taking time to review!
On 6/7/23 7:52 PM, Michał Mirosław wrote:
On Tue, 6 Jun 2023 at 08:08, Muhammad Usama Anjum usama.anjum@collabora.com wrote:
This IOCTL, PAGEMAP_SCAN on pagemap file can be used to get and/or clear the info about page table entries. The following operations are supported in this ioctl:
- Get the information if the pages have been written-to (PAGE_IS_WRITTEN), file mapped (PAGE_IS_FILE), present (PAGE_IS_PRESENT) or swapped (PAGE_IS_SWAPPED).
- Find pages which have been written-to and/or write protect the pages (atomic PM_SCAN_OP_GET + PM_SCAN_OP_WP)
This IOCTL can be extended to get information about more PTE bits.
[...]
--- a/fs/proc/task_mmu.c +++ b/fs/proc/task_mmu.c
[...]
+static inline bool pagemap_scan_check_page_written(struct pagemap_scan_private *p) +{
return (p->required_mask | p->anyof_mask | p->excluded_mask) &
PAGE_IS_WRITTEN;
+}
This could be precalculated and put as a flag into pagemap_scan_private - it is kernel-private structure and there are a few spare bits in `flags` if you'd prefer not to add an explicit boolean.
This inline function is only being used at one spot. I can remove the function altogether. I don't like putting it in flags. It'll bring some complexity.
The difference at the call site will be function call vs field access. Do you mean that moving the function to where the struct is initialized would add complexity? Why is that?
In my view, adding this calculation to `flag` would make the `flag double meaning. 1) user flags 2) wp flag is turn on or off Okay, I've added the flag and removed this function call from frpagemap_scan_test_walk().
[...]
+static int pagemap_scan_output(bool wt, bool file, bool pres, bool swap,
struct pagemap_scan_private *p,
unsigned long addr, unsigned int n_pages)
+{
unsigned long bitmap = PM_SCAN_BITMAP(wt, file, pres, swap);
struct page_region *cur = &p->cur;
if (!n_pages)
return -EINVAL;
if ((p->required_mask & bitmap) != p->required_mask)
return 0;
if (p->anyof_mask && !(p->anyof_mask & bitmap))
return 0;
if (p->excluded_mask & bitmap)
return 0;
bitmap &= p->return_mask;
if (!bitmap)
return 0;
if (cur->bitmap == bitmap &&
cur->start + cur->len * PAGE_SIZE == addr) {
cur->len += n_pages;
p->found_pages += n_pages;
} else {
/*
* All data is copied to cur first. When more data is found, we
* push cur to vec and copy new data to cur. The vec_index
* represents the current index of vec array. We add 1 to the
* vec_index while performing checks to account for data in cur.
*/
if (cur->len && (p->vec_index + 1) >= p->vec_len)
return -ENOSPC;
if (cur->len) {
memcpy(&p->vec[p->vec_index], cur, sizeof(*p->vec));
p->vec_index++;
}
cur->start = addr;
cur->len = n_pages;
cur->bitmap = bitmap;
p->found_pages += n_pages;
}
if (p->max_pages && (p->found_pages == p->max_pages))
return PM_SCAN_FOUND_MAX_PAGES;
return 0;
+}
+static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
unsigned long end, struct mm_walk *walk)
+{
struct pagemap_scan_private *p = walk->private;
struct vm_area_struct *vma = walk->vma;
unsigned long addr = end;
pte_t *pte, *orig_pte;
spinlock_t *ptl;
bool is_written;
int ret = 0;
arch_enter_lazy_mmu_mode();
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
unsigned long n_pages = (end - start)/PAGE_SIZE;
if (p->max_pages && n_pages > p->max_pages - p->found_pages)
n_pages = p->max_pages - p->found_pages;
Since p->found_pages is only ever increased in `pagemap_scan_output()` and that function is only called for GET or GET+WP operations, maybe the logic could be folded to pagemap_scan_output() to avoid duplication? In this function the calculation is used only when WP op is done to split the HP if n_pages limit would be hit, but if using plain WP (without GET) it doesn't make sense to use the limit.
The n_pages is needed to decide if THP need to be broken down and it is used in pagemap_scan_output(). I've brought this condition out of pagemap_scan_output() to cater this former condition. If I move it to pagemap_scan_output(), I'll have to write same condition to find out if I need to breakt he THP. This seems like repetition, but we have same use case for tlbhuge page.
My point is that you need to split the THP only if doing a GET+WP operation. If you only do GET, then the worst case would be for the process to report a spurious WRITTEN bit if an earlier-visited part of THP was modified and the scan restarted in the middle of a THP.
We only need to split if doing GET+WP or WP only. In case of WP op, I need to check if we have less than HPAGE_SIZE/PAGE_SIZE pages and only then split. So moving this if condition would not be beneficial.
(pagemap_scan_output() is trivial enough so I think it could be pulled
inside the spinlocked region.)
It is already in spinlocked region. Spin lock is being released after tlb flush.
Ah, I was thinking about calling pagemap_scan_output() before checking split_huge_pmd() case - and at that use the pagemap_scan_output()'s return value to do the check.
is_written = !is_pmd_uffd_wp(*pmd);
/*
* Break huge page into small pages if the WP operation need to
* be performed is on a portion of the huge page.
*/
if (is_written && IS_PM_SCAN_WP(p->flags) &&
n_pages < HPAGE_SIZE/PAGE_SIZE) {
spin_unlock(ptl);
split_huge_pmd(vma, pmd, start);
goto process_smaller_pages;
}
if (IS_PM_SCAN_GET(p->flags))
ret = pagemap_scan_output(is_written, vma->vm_file,
pmd_present(*pmd),
is_swap_pmd(*pmd),
p, start, n_pages);
if (ret >= 0 && is_written && IS_PM_SCAN_WP(p->flags))
make_uffd_wp_pmd(vma, addr, pmd);
if (IS_PM_SCAN_WP(p->flags))
Why `is_written` is not checked? If is_written is false, then the WP op should be a no-op and so won't need TLB flushing, will it? [Same for the PTE case below.]
It can be done for THP. But for ptes we cannot trust is_written as is_written only represent last pte state.
Ok, so the PTE case could use a flag recording whether any PTE had WP applied instead of `is_written`.
Definately, but I'll have to add a extra variable. I'll add it as you have asked.
flush_tlb_range(vma, start, end);
[...]
if (IS_PM_SCAN_WP(p->flags))
flush_tlb_range(vma, start, addr);
pte_unmap_unlock(orig_pte, ptl);
arch_leave_lazy_mmu_mode();
cond_resched();
return ret;
+}
+#ifdef CONFIG_HUGETLB_PAGE +static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
unsigned long start, unsigned long end,
struct mm_walk *walk)
+{
unsigned long n_pages = (end - start)/PAGE_SIZE;
struct pagemap_scan_private *p = walk->private;
struct vm_area_struct *vma = walk->vma;
struct hstate *h = hstate_vma(vma);
spinlock_t *ptl;
bool is_written;
int ret = 0;
pte_t pte;
if (p->max_pages && n_pages > p->max_pages - p->found_pages)
n_pages = p->max_pages - p->found_pages;
if (IS_PM_SCAN_WP(p->flags)) {
i_mmap_lock_write(vma->vm_file->f_mapping);
ptl = huge_pte_lock(h, vma->vm_mm, ptep);
}
pte = huge_ptep_get(ptep);
is_written = !is_huge_pte_uffd_wp(pte);
/*
* Partial hugetlb page clear isn't supported
*/
if (is_written && IS_PM_SCAN_WP(p->flags) &&
n_pages < HPAGE_SIZE/PAGE_SIZE) {
ret = -EPERM;
Shouldn't this be ENOSPC, conveying that the operation would overflow the n_pages limit?
We are testing here is user has asked us to engage WP on a part of the hugetlb or we can only perform WP on a part of the engage as user buffer is full. We cannot judge this has happened because of the former or later condition. So I'm assuming that user's parameters aren't solid enough and returning -EPERM. It seemed more suitable to me. But I can return -ENOSPC as well, if you say?
Those two cases can be differentiated when checked before truncating n_pages. If a user requests partial WP for a hugetlb page wouldn't EINVAL (or other error - as this can't ever work) be more appropriate (this check could happen only at the start of scan)? If the request is due to max_pages limit (with found_pages > 0), then I'd return ENOSPC and expect the user to restart the scan with a new buffer.
Okay. I'll update.
Our discussion here makes me wonder: what is the expected return value for the ioctl WP (without GET) operation? If it would return e.g. the number of 4K-pages successfully scanned, then the caller would be able to detect the partial tail hugepage case and act accordingly.
Returning error in case of only WP means partial hugetlb is hit. User should expect the partial wp on the memory area already.
If we really want to return number of pages cleared, possible option of return value: * Return 0 means whole region is wp-ed * Return number of pages wp-ed if some error occurred (we need to handle this only for hugetlb) OR return -1 * number of pages wp-ed?
An another uniform way can be to sum all wp-ed pages every time and return them * -. -1 is needed to let the know user that wp operation got halted mid way.
+static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
int depth, struct mm_walk *walk)
+{
unsigned long n_pages = (end - addr)/PAGE_SIZE;
struct pagemap_scan_private *p = walk->private;
struct vm_area_struct *vma = walk->vma;
int ret = 0;
if (!vma || !IS_PM_SCAN_GET(p->flags))
return 0;
if (p->max_pages && n_pages > p->max_pages - p->found_pages)
n_pages = p->max_pages - p->found_pages;
Nit: If the page flags don't match (wouldn't be output), the limit would not be hit and the calculation is unnecessary. But if it was done in pagemap_scan_output() instead after all the flags checks...
Correct for this use case. But moving to pagemap_scan_output() would make me do duplicate calculation for other 2 cases as explained above.
(responded below the cases above)
ret = pagemap_scan_output(false, vma->vm_file, false, false, p, addr,
n_pages);
return ret;
+}
[...]
+static long do_pagemap_scan(struct mm_struct *mm,
struct pm_scan_arg __user *uarg)
+{
unsigned long start, end, walk_start, walk_end;
unsigned long empty_slots, vec_index = 0;
struct mmu_notifier_range range;
struct page_region __user *vec;
struct pagemap_scan_private p;
struct pm_scan_arg arg;
int ret = 0;
if (copy_from_user(&arg, uarg, sizeof(arg)))
return -EFAULT;
start = untagged_addr((unsigned long)arg.start);
vec = (struct page_region *)untagged_addr((unsigned long)arg.vec);
ret = pagemap_scan_args_valid(&arg, start, vec);
if (ret)
return ret;
end = start + arg.len;
p.max_pages = arg.max_pages;
p.found_pages = 0;
p.flags = arg.flags;
p.required_mask = arg.required_mask;
p.anyof_mask = arg.anyof_mask;
p.excluded_mask = arg.excluded_mask;
p.return_mask = arg.return_mask;
p.cur.start = p.cur.len = p.cur.bitmap = 0;
p.vec = NULL;
p.vec_len = PAGEMAP_WALK_SIZE >> PAGE_SHIFT;
If p.vec_len would not count the entry held in `cur` (IOW: vec_len = WALK_SIZE - 1), then pagemap_scan_output() wouldn't need the big comment about adding or subtracting 1 when checking for overflow. The output vector needs to have space for at least one entrry to make GET useful. Maybe `cur` could be renamed or annotated to express that it always holds the last entry?
Ohhh.. This can be done by doing subtracting 1 from empty_slots. But I've explored the idea. I don't see any benefit. If we do this, then I'll have to put a comment why subtracting 1 is needed. Seems like same problem:
--- a/fs/proc/task_mmu.c +++ b/fs/proc/task_mmu.c @@ -1909,7 +1909,7 @@ static int pagemap_scan_output(bool wt, bool file, bool pres, bool swap, * represents the current index of vec array. We add 1 to the * vec_index while performing checks to account for data in cur. */
if (cur->len && (p->vec_index + 1) >= p->vec_len)
if (cur->len && p->vec_index >= p->vec_len) return -ENOSPC; if (cur->len) {
@@ -2202,7 +2202,7 @@ static long do_pagemap_scan(struct mm_struct *mm, if (IS_PM_SCAN_GET(p.flags)) { p.vec_index = 0;
empty_slots = arg.vec_len - vec_index;
empty_slots = arg.vec_len - 1 - vec_index; p.vec_len = min(p.vec_len, empty_slots); }
Lets leave it as it is. I can change `cur` to `last` or any other name. Please suggest.
The difference is that you have the subtraction only once per the outer page_walk loop iteration, but in the current version the addition has to happen every pagemap_scan_output() call after a hole.
I'll update as you are saying. After updating, we cannot abort this outer loop if length is 0 as the last element is present in cur.
From the readability perspective, "if (next_index >= vec_len)" is short and self-documenting. Also I'd use "p.vec_len = min(p.vec_len, empty_slots - 1)" as it also conveys the intent better (in that `vec` is holding all but the last entry, but arg.vec_len holds the final output buffer length).
If we're picking colors, then maybe make `arg.vec_len` have a different name than `p.vec_len` (same for `vec_index`) so that there is less confusion possible as to what they refer to. Maybe keep `arg.vec_len`, but have `p.vec_buf`, `p.vec_buf_len`, and `p.next_buf_index`?
So we do have colors in variable names. :) I'll update.
(Note: you'd also need to decrement p.vec_len where it is first assigned.)
[...] Best Regards Michał Mirosław
New IOCTL and macros has been added in the kernel sources. Update the tools header file as well.
Signed-off-by: Muhammad Usama Anjum usama.anjum@collabora.com --- tools/include/uapi/linux/fs.h | 53 +++++++++++++++++++++++++++++++++++ 1 file changed, 53 insertions(+)
diff --git a/tools/include/uapi/linux/fs.h b/tools/include/uapi/linux/fs.h index b7b56871029c..47879c38ce2f 100644 --- a/tools/include/uapi/linux/fs.h +++ b/tools/include/uapi/linux/fs.h @@ -305,4 +305,57 @@ typedef int __bitwise __kernel_rwf_t; #define RWF_SUPPORTED (RWF_HIPRI | RWF_DSYNC | RWF_SYNC | RWF_NOWAIT |\ RWF_APPEND)
+/* Pagemap ioctl */ +#define PAGEMAP_SCAN _IOWR('f', 16, struct pm_scan_arg) + +/* Bits are set in the bitmap of the page_region and masks in pm_scan_args */ +#define PAGE_IS_WRITTEN (1 << 0) +#define PAGE_IS_FILE (1 << 1) +#define PAGE_IS_PRESENT (1 << 2) +#define PAGE_IS_SWAPPED (1 << 3) + +/* + * struct page_region - Page region with bitmap flags + * @start: Start of the region + * @len: Length of the region in pages + * bitmap: Bits sets for the region + */ +struct page_region { + __u64 start; + __u64 len; + __u64 bitmap; +}; + +/* + * struct pm_scan_arg - Pagemap ioctl argument + * @size: Size of the structure + * @flags: Flags for the IOCTL + * @start: Starting address of the region + * @len: Length of the region (All the pages in this length are included) + * @vec: Address of page_region struct array for output + * @vec_len: Length of the page_region struct array + * @max_pages: Optional max return pages + * @required_mask: Required mask - All of these bits have to be set in the PTE + * @anyof_mask: Any mask - Any of these bits are set in the PTE + * @excluded_mask: Exclude mask - None of these bits are set in the PTE + * @return_mask: Bits that are to be reported in page_region + */ +struct pm_scan_arg { + __u64 size; + __u64 flags; + __u64 start; + __u64 len; + __u64 vec; + __u64 vec_len; + __u64 max_pages; + __u64 required_mask; + __u64 anyof_mask; + __u64 excluded_mask; + __u64 return_mask; +}; + +/* Supported flags */ +#define PM_SCAN_OP_GET (1 << 0) +#define PM_SCAN_OP_WP (1 << 1) + #endif /* _UAPI_LINUX_FS_H */
Add some explanation and method to use write-protection and written-to on memory range.
Signed-off-by: Muhammad Usama Anjum usama.anjum@collabora.com --- Changes in v16: - Update the documentation
Changes in v11: - Add more documentation --- Documentation/admin-guide/mm/pagemap.rst | 58 ++++++++++++++++++++++++ 1 file changed, 58 insertions(+)
diff --git a/Documentation/admin-guide/mm/pagemap.rst b/Documentation/admin-guide/mm/pagemap.rst index c8f380271cad..3b977526d4b3 100644 --- a/Documentation/admin-guide/mm/pagemap.rst +++ b/Documentation/admin-guide/mm/pagemap.rst @@ -227,3 +227,61 @@ Before Linux 3.11 pagemap bits 55-60 were used for "page-shift" (which is always 12 at most architectures). Since Linux 3.11 their meaning changes after first clear of soft-dirty bits. Since Linux 4.2 they are used for flags unconditionally. + +Pagemap Scan IOCTL +================== + +The ``PAGEMAP_SCAN`` IOCTL on the pagemap file can be used to get or optionally +clear the info about page table entries. The following operations are supported +in this IOCTL: +- Get the information if the pages have been written-to (``PAGE_IS_WRITTEN``), + file mapped (``PAGE_IS_FILE``), present (``PAGE_IS_PRESENT``) or swapped + (``PAGE_IS_SWAPPED``). +- Find pages which have been written-to and/or write protect the pages atomically + (atomic ``PM_SCAN_OP_GET + PM_SCAN_OP_WP``) + +The ``struct pm_scan_arg`` is used as the argument of the IOCTL. + 1. The size of the ``struct pm_scan_arg`` must be specified in the ``size`` + field. This field will be helpful in recognizing the structure if extensions + are done later. + 2. The flags can be specified in the ``flags`` field. The ``PM_SCAN_OP_GET`` + and ``PM_SCAN_OP_WP`` are the only added flags at this time. + 3. The range is specified through ``start`` and ``len``. + 4. The output buffer of ``struct page_region`` array and size is specified in + ``vec`` and ``vec_len``. + 5. The optional maximum requested pages are specified in the ``max_pages``. + 6. The masks are specified in ``required_mask``, ``anyof_mask``, + ``excluded_ mask`` and ``return_mask``. + 1. To find if ``PAGE_IS_WRITTEN`` flag is set for pages which have + ``PAGE_IS_FILE`` set and ``PAGE_IS_SWAPPED`` un-set, ``required_mask`` + is set to ``PAGE_IS_FILE``, ``exclude_mask`` is set to + ``PAGE_IS_SWAPPED`` and ``return_mask`` is set to ``PAGE_IS_WRITTEN``. + The output buffer in ``vec`` and length must be specified in ``vec_len``. + 2. To find pages which have either ``PAGE_IS_FILE`` or ``PAGE_IS_SWAPPED`` + set, ``anyof_masks`` is set to ``PAGE_IS_FILE | PAGE_IS_SWAPPED``. + 3. To find written pages and engage write protect, ``PAGE_IS_WRITTEN`` is + specified in ``required_mask`` and ``return_mask``. In addition to + specifying the output buffer in ``vec`` and length in ``vec_len``, the + ``PM_SCAN_OP_WP`` is specified in ``flags`` to perform write protect + on the range as well. + +The ``PAGE_IS_WRITTEN`` flag can be considered as the better and correct +alternative of soft-dirty flag. It doesn't get affected by household chores (VMA +merging) of the kernel and hence the user can find the true soft-dirty pages +only. This IOCTL adds the atomic way to find which pages have been written and +write protect those pages again. This kind of operation is needed to efficiently +find out which pages have changed in the memory. + +To get information about which pages have been written-to or optionally write +protect the pages, following must be performed first in order: + 1. The userfaultfd file descriptor is created with ``userfaultfd`` syscall. + 2. The ``UFFD_FEATURE_WP_UNPOPULATED`` and ``UFFD_FEATURE_WP_ASYNC`` features + are set by ``UFFDIO_API`` IOCTL. + 3. The memory range is registered with ``UFFDIO_REGISTER_MODE_WP`` mode + through ``UFFDIO_REGISTER`` IOCTL. + 4. Then the any part of the registered memory or the whole memory region must + be write protected using ``PAGEMAP_SCAN`` IOCTL with flag ``PM_SCAN_OP_WP`` + or the ``UFFDIO_WRITEPROTECT`` IOCTL can be used. Both of these perform the + same operation. The former is better in terms of performance. + 5. Now the ``PAGEMAP_SCAN`` IOCTL can be used to either just find pages which + have been written-to and/or optionally write protect the pages as well.
Add pagemap ioctl tests. Add several different types of tests to judge the correction of the interface.
Signed-off-by: Muhammad Usama Anjum usama.anjum@collabora.com --- Changes in v17: - Rebase on top of next-20230525
Changes in v16: - Added yet more tests which is a randomization test case to catch the corner cases - Add reset by exclusive PM_SCAN_OP_WP as well
Changes in v13: - Update tests and rebase Makefile
Changes in v12: - Updates and add more memory type tests
Changes in v11: - Rebase on top of next-20230216 and update tests
Chages in v7: - Add and update all test cases
Changes in v6: - Rename variables
Changes in v4: - Updated all the tests to conform to new IOCTL
Changes in v3: - Add another test to do sanity of flags
Changes in v2: - Update the tests to use the ioctl interface instead of syscall --- TAP version 13 1..92 ok 1 sanity_tests_sd memory size must be valid ok 2 sanity_tests_sd output buffer must be specified ok 3 sanity_tests_sd output buffer size must be valid ok 4 sanity_tests_sd wrong flag specified ok 5 sanity_tests_sd flag has extra bits specified ok 6 sanity_tests_sd no selection mask is specified ok 7 sanity_tests_sd no return mask is specified ok 8 sanity_tests_sd wrong return mask specified ok 9 sanity_tests_sd mixture of correct and wrong flag ok 10 sanity_tests_sd PAGEMAP_BITS_ALL cannot be specified with PM_SCAN_OP_WP ok 11 sanity_tests_sd Clear area with larger vec size ok 12 sanity_tests_sd Repeated pattern of written and non-written pages ok 13 sanity_tests_sd Repeated pattern of written and non-written pages in parts ok 14 sanity_tests_sd Repeated pattern of written and non-written pages max_pages ok 15 sanity_tests_sd only get 2 written pages and clear them as well ok 16 sanity_tests_sd Two regions ok 17 sanity_tests_sd Smaller max_pages ok 18 Smaller vec 46 50 ok 19 Page testing: all new pages must not be written (dirty) ok 20 Page testing: all pages must be written (dirty) ok 21 Page testing: all pages dirty other than first and the last one ok 22 Page testing: PM_SCAN_OP_WP ok 23 Page testing: only middle page dirty ok 24 Page testing: only two middle pages dirty ok 25 Large Page testing: all new pages must not be written (dirty) ok 26 Large Page testing: all pages must be written (dirty) ok 27 Large Page testing: all pages dirty other than first and the last one ok 28 Large Page testing: PM_SCAN_OP_WP ok 29 Large Page testing: only middle page dirty ok 30 Large Page testing: only two middle pages dirty ok 31 Huge page testing: all new pages must not be written (dirty) ok 32 Huge page testing: all pages must be written (dirty) ok 33 Huge page testing: all pages dirty other than first and the last one ok 34 Huge page testing: PM_SCAN_OP_WP ok 35 Huge page testing: only middle page dirty ok 36 Huge page testing: only two middle pages dirty ok 37 Hugetlb shmem testing: all new pages must not be written (dirty) ok 38 Hugetlb shmem testing: all pages must be written (dirty) ok 39 Hugetlb shmem testing: all pages dirty other than first and the last one ok 40 Hugetlb shmem testing: PM_SCAN_OP_WP ok 41 Hugetlb shmem testing: only middle page dirty ok 42 Hugetlb shmem testing: only two middle pages dirty ok 43 Hugetlb mem testing: all new pages must not be written (dirty) ok 44 Hugetlb mem testing: all pages must be written (dirty) ok 45 Hugetlb mem testing: all pages dirty other than first and the last one ok 46 Hugetlb mem testing: PM_SCAN_OP_WP ok 47 Hugetlb mem testing: only middle page dirty ok 48 Hugetlb mem testing: only two middle pages dirty ok 49 File memory testing: all new pages must not be written (dirty) ok 50 File memory testing: all pages must be written (dirty) ok 51 File memory testing: all pages dirty other than first and the last one ok 52 File memory testing: PM_SCAN_OP_WP ok 53 File memory testing: only middle page dirty ok 54 File memory testing: only two middle pages dirty ok 55 File anonymous memory testing: all new pages must not be written (dirty) ok 56 File anonymous memory testing: all pages must be written (dirty) ok 57 File anonymous memory testing: all pages dirty other than first and the last one ok 58 File anonymous memory testing: PM_SCAN_OP_WP ok 59 File anonymous memory testing: only middle page dirty ok 60 File anonymous memory testing: only two middle pages dirty ok 61 hpage_unit_tests all new huge page must not be written (dirty) ok 62 hpage_unit_tests all the huge page must not be written ok 63 hpage_unit_tests all the huge page must be written and clear ok 64 hpage_unit_tests only middle page written ok 65 hpage_unit_tests clear first half of huge page ok 66 hpage_unit_tests clear first half of huge page with limited buffer ok 67 hpage_unit_tests clear second half huge page ok 68 hpage_unit_tests get half huge page ok 69 hpage_unit_tests get half huge page ok 70 Test test_simple ok 71 mprotect_tests Both pages written ok 72 mprotect_tests Both pages are not written (dirty) ok 73 mprotect_tests Both pages written after remap and mprotect ok 74 mprotect_tests Clear and make the pages written ok 75 transact_test count 192 ok 76 transact_test count 0 ok 77 transact_test Extra pages 0 (0.0%), extra thread faults 0. ok 78 sanity_tests clear op can only be specified with PAGE_IS_WRITTEN ok 79 sanity_tests required_mask specified ok 80 sanity_tests anyof_mask specified ok 81 sanity_tests excluded_mask specified ok 82 sanity_tests required_mask and anyof_mask specified ok 83 sanity_tests Get sd and present pages with anyof_mask ok 84 sanity_tests Get all the pages with required_mask ok 85 sanity_tests Get sd and present pages with required_mask and anyof_mask ok 86 sanity_tests Don't get sd pages ok 87 sanity_tests Don't get present pages ok 88 sanity_tests Find written present pages with return mask ok 89 sanity_tests Memory mapped file ok 90 sanity_tests Read/write to private memory mapped file ok 91 unmapped_region_tests Get status of pages ok 92 userfaultfd_tests all new pages must not be written (dirty) # Totals: pass:92 fail:0 xfail:0 xpass:0 skip:0 error:0 --- tools/testing/selftests/mm/.gitignore | 1 + tools/testing/selftests/mm/Makefile | 3 +- tools/testing/selftests/mm/config | 1 + tools/testing/selftests/mm/pagemap_ioctl.c | 1459 ++++++++++++++++++++ tools/testing/selftests/mm/run_vmtests.sh | 4 + 5 files changed, 1467 insertions(+), 1 deletion(-) create mode 100644 tools/testing/selftests/mm/pagemap_ioctl.c mode change 100644 => 100755 tools/testing/selftests/mm/run_vmtests.sh
diff --git a/tools/testing/selftests/mm/.gitignore b/tools/testing/selftests/mm/.gitignore index ab215303d8e9..0e351fbafdbe 100644 --- a/tools/testing/selftests/mm/.gitignore +++ b/tools/testing/selftests/mm/.gitignore @@ -17,6 +17,7 @@ mremap_dontunmap mremap_test on-fault-limit transhuge-stress +pagemap_ioctl protection_keys protection_keys_32 protection_keys_64 diff --git a/tools/testing/selftests/mm/Makefile b/tools/testing/selftests/mm/Makefile index a255f2d54927..5864a6643815 100644 --- a/tools/testing/selftests/mm/Makefile +++ b/tools/testing/selftests/mm/Makefile @@ -30,7 +30,7 @@ MACHINE ?= $(shell echo $(uname_M) | sed -e 's/aarch64.*/arm64/' -e 's/ppc64.*/p MAKEFLAGS += --no-builtin-rules
CFLAGS = -Wall -I $(top_srcdir) -I $(top_srcdir)/tools/include/uapi $(EXTRA_CFLAGS) $(KHDR_INCLUDES) -LDLIBS = -lrt -lpthread +LDLIBS = -lrt -lpthread -lm
TEST_GEN_PROGS = cow TEST_GEN_PROGS += compaction_test @@ -56,6 +56,7 @@ TEST_GEN_PROGS += mrelease_test TEST_GEN_PROGS += mremap_dontunmap TEST_GEN_PROGS += mremap_test TEST_GEN_PROGS += on-fault-limit +TEST_GEN_PROGS += pagemap_ioctl TEST_GEN_PROGS += thuge-gen TEST_GEN_PROGS += transhuge-stress TEST_GEN_PROGS += uffd-stress diff --git a/tools/testing/selftests/mm/config b/tools/testing/selftests/mm/config index be087c4bc396..4309916f629e 100644 --- a/tools/testing/selftests/mm/config +++ b/tools/testing/selftests/mm/config @@ -1,5 +1,6 @@ CONFIG_SYSVIPC=y CONFIG_USERFAULTFD=y +CONFIG_PTE_MARKER_UFFD_WP=y CONFIG_TEST_VMALLOC=m CONFIG_DEVICE_PRIVATE=y CONFIG_TEST_HMM=m diff --git a/tools/testing/selftests/mm/pagemap_ioctl.c b/tools/testing/selftests/mm/pagemap_ioctl.c new file mode 100644 index 000000000000..1c2d0034c0dc --- /dev/null +++ b/tools/testing/selftests/mm/pagemap_ioctl.c @@ -0,0 +1,1459 @@ +// SPDX-License-Identifier: GPL-2.0 +#define _GNU_SOURCE +#include <stdio.h> +#include <fcntl.h> +#include <string.h> +#include <sys/mman.h> +#include <errno.h> +#include <malloc.h> +#include "vm_util.h" +#include "../kselftest.h" +#include <linux/types.h> +#include <linux/memfd.h> +#include <linux/userfaultfd.h> +#include <linux/fs.h> +#include <sys/ioctl.h> +#include <sys/stat.h> +#include <math.h> +#include <asm/unistd.h> +#include <pthread.h> +#include <sys/resource.h> +#include <assert.h> +#include <sys/ipc.h> +#include <sys/shm.h> + +#define PAGEMAP_BITS_ALL (PAGE_IS_WRITTEN | PAGE_IS_FILE | \ + PAGE_IS_PRESENT | PAGE_IS_SWAPPED) +#define PAGEMAP_NON_WRITTEN_BITS (PAGE_IS_FILE | PAGE_IS_PRESENT | \ + PAGE_IS_SWAPPED) + +#define TEST_ITERATIONS 100 +#define PAGEMAP "/proc/self/pagemap" +int pagemap_fd; +int uffd; +int page_size; +int hpage_size; + +static long pagemap_ioctl(void *start, int len, void *vec, int vec_len, int flag, + int max_pages, long required_mask, long anyof_mask, long excluded_mask, + long return_mask) +{ + struct pm_scan_arg arg; + + arg.start = (uintptr_t)start; + arg.len = len; + arg.vec = (uintptr_t)vec; + arg.vec_len = vec_len; + arg.flags = flag; + arg.size = sizeof(struct pm_scan_arg); + arg.max_pages = max_pages; + arg.required_mask = required_mask; + arg.anyof_mask = anyof_mask; + arg.excluded_mask = excluded_mask; + arg.return_mask = return_mask; + + return ioctl(pagemap_fd, PAGEMAP_SCAN, &arg); +} + +int init_uffd(void) +{ + struct uffdio_api uffdio_api; + + uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); + if (uffd == -1) + ksft_exit_fail_msg("uffd syscall failed\n"); + + uffdio_api.api = UFFD_API; + uffdio_api.features = UFFD_FEATURE_WP_UNPOPULATED | UFFD_FEATURE_WP_ASYNC | + UFFD_FEATURE_WP_HUGETLBFS_SHMEM; + if (ioctl(uffd, UFFDIO_API, &uffdio_api)) + ksft_exit_fail_msg("UFFDIO_API\n"); + + if (!(uffdio_api.api & UFFDIO_REGISTER_MODE_WP) || + !(uffdio_api.features & UFFD_FEATURE_WP_UNPOPULATED) || + !(uffdio_api.features & UFFD_FEATURE_WP_ASYNC) || + !(uffdio_api.features & UFFD_FEATURE_WP_HUGETLBFS_SHMEM)) + ksft_exit_fail_msg("UFFDIO_API error %llu\n", uffdio_api.api); + + return 0; +} + +int wp_init(void *lpBaseAddress, int dwRegionSize) +{ + struct uffdio_register uffdio_register; + struct uffdio_writeprotect wp; + + uffdio_register.range.start = (unsigned long)lpBaseAddress; + uffdio_register.range.len = dwRegionSize; + uffdio_register.mode = UFFDIO_REGISTER_MODE_WP; + if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) + ksft_exit_fail_msg("ioctl(UFFDIO_REGISTER) %d %s\n", errno, strerror(errno)); + + if (!(uffdio_register.ioctls & UFFDIO_WRITEPROTECT)) + ksft_exit_fail_msg("ioctl set is incorrect\n"); + + wp.range.start = (unsigned long)lpBaseAddress; + wp.range.len = dwRegionSize; + wp.mode = UFFDIO_WRITEPROTECT_MODE_WP; + + if (ioctl(uffd, UFFDIO_WRITEPROTECT, &wp)) + ksft_exit_fail_msg("ioctl(UFFDIO_WRITEPROTECT)\n"); + + return 0; +} + +int wp_free(void *lpBaseAddress, int dwRegionSize) +{ + struct uffdio_register uffdio_register; + + uffdio_register.range.start = (unsigned long)lpBaseAddress; + uffdio_register.range.len = dwRegionSize; + uffdio_register.mode = UFFDIO_REGISTER_MODE_WP; + if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) + ksft_exit_fail_msg("ioctl unregister failure\n"); + return 0; +} + +int wp_addr_range(void *lpBaseAddress, int dwRegionSize) +{ + struct uffdio_writeprotect wp; + + if (rand() % 2) { + wp.range.start = (unsigned long)lpBaseAddress; + wp.range.len = dwRegionSize; + wp.mode = UFFDIO_WRITEPROTECT_MODE_WP; + + if (ioctl(uffd, UFFDIO_WRITEPROTECT, &wp)) + ksft_exit_fail_msg("ioctl(UFFDIO_WRITEPROTECT)\n"); + } else { + if (pagemap_ioctl(lpBaseAddress, dwRegionSize, NULL, 0, PM_SCAN_OP_WP, + 0, PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN) < 0) + ksft_exit_fail_msg("error %d %d %s\n", 1, errno, strerror(errno)); + } + + return 0; +} + +void *gethugetlb_mem(int size, int *shmid) +{ + char *mem; + + if (shmid) { + *shmid = shmget(2, size, SHM_HUGETLB | IPC_CREAT | SHM_R | SHM_W); + if (*shmid < 0) + return NULL; + + mem = shmat(*shmid, 0, 0); + if (mem == (char *)-1) { + shmctl(*shmid, IPC_RMID, NULL); + ksft_exit_fail_msg("Shared memory attach failure\n"); + } + } else { + mem = mmap(NULL, size, PROT_READ | PROT_WRITE, + MAP_ANONYMOUS | MAP_HUGETLB | MAP_PRIVATE, -1, 0); + if (mem == MAP_FAILED) + return NULL; + } + + return mem; +} + +int userfaultfd_tests(void) +{ + int mem_size, vec_size, written, num_pages = 16; + char *mem, *vec; + + mem_size = num_pages * page_size; + mem = mmap(NULL, mem_size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (mem == MAP_FAILED) + ksft_exit_fail_msg("error nomem\n"); + + wp_init(mem, mem_size); + + /* Change protection of pages differently */ + mprotect(mem, mem_size/8, PROT_READ|PROT_WRITE); + mprotect(mem + 1 * mem_size/8, mem_size/8, PROT_READ); + mprotect(mem + 2 * mem_size/8, mem_size/8, PROT_READ|PROT_WRITE); + mprotect(mem + 3 * mem_size/8, mem_size/8, PROT_READ); + mprotect(mem + 4 * mem_size/8, mem_size/8, PROT_READ|PROT_WRITE); + mprotect(mem + 5 * mem_size/8, mem_size/8, PROT_NONE); + mprotect(mem + 6 * mem_size/8, mem_size/8, PROT_READ|PROT_WRITE); + mprotect(mem + 7 * mem_size/8, mem_size/8, PROT_READ); + + wp_addr_range(mem + (mem_size/16), mem_size - 2 * (mem_size/8)); + wp_addr_range(mem, mem_size); + + vec_size = mem_size/page_size; + vec = malloc(sizeof(struct page_region) * vec_size); + + written = pagemap_ioctl(mem, mem_size, vec, 1, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + vec_size - 2, PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (written < 0) + ksft_exit_fail_msg("error %d %d %s\n", written, errno, strerror(errno)); + + ksft_test_result(written == 0, "%s all new pages must not be written (dirty)\n", __func__); + + wp_free(mem, mem_size); + munmap(mem, mem_size); + free(vec); + return 0; +} + +int get_reads(struct page_region *vec, int vec_size) +{ + int i, sum = 0; + + for (i = 0; i < vec_size; i++) + sum += vec[i].len; + + return sum; +} + +int sanity_tests_sd(void) +{ + int mem_size, vec_size, ret, ret2, ret3, i, num_pages = 10, total_pages = 0; + int total_writes, total_reads, reads, count; + struct page_region *vec, *vec2; + char *mem, *m[2]; + + vec_size = 100; + mem_size = num_pages * page_size; + + vec = malloc(sizeof(struct page_region) * vec_size); + if (!vec) + ksft_exit_fail_msg("error nomem\n"); + + vec2 = malloc(sizeof(struct page_region) * vec_size); + if (!vec2) + ksft_exit_fail_msg("error nomem\n"); + + mem = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (mem == MAP_FAILED) + ksft_exit_fail_msg("error nomem\n"); + + wp_init(mem, mem_size); + wp_addr_range(mem, mem_size); + + /* 1. wrong operation */ + ksft_test_result(pagemap_ioctl(mem, 0, vec, vec_size, PM_SCAN_OP_GET, + 0, PAGEMAP_BITS_ALL, 0, 0, PAGEMAP_BITS_ALL) < 0, + "%s memory size must be valid\n", __func__); + + ksft_test_result(pagemap_ioctl(mem, mem_size, NULL, vec_size, PM_SCAN_OP_GET, + 0, PAGEMAP_BITS_ALL, 0, 0, PAGEMAP_BITS_ALL) < 0, + "%s output buffer must be specified\n", __func__); + + ksft_test_result(pagemap_ioctl(mem, mem_size, vec, 0, PM_SCAN_OP_GET, + 0, PAGEMAP_BITS_ALL, 0, 0, PAGEMAP_BITS_ALL) < 0, + "%s output buffer size must be valid\n", __func__); + + ksft_test_result(pagemap_ioctl(mem, mem_size, vec, vec_size, -1, + 0, PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN) < 0, + "%s wrong flag specified\n", __func__); + + ksft_test_result(pagemap_ioctl(mem, mem_size, vec, vec_size, + PM_SCAN_OP_GET | PM_SCAN_OP_WP | 0xFF, + 0, PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN) < 0, + "%s flag has extra bits specified\n", __func__); + + ksft_test_result(pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, + 0, 0, 0, 0, PAGE_IS_WRITTEN) < 0, + "%s no selection mask is specified\n", __func__); + + ksft_test_result(pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, + 0, PAGE_IS_WRITTEN, PAGE_IS_WRITTEN, 0, 0) < 0, + "%s no return mask is specified\n", __func__); + + ksft_test_result(pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, + 0, PAGE_IS_WRITTEN, 0, 0, 0x1000) < 0, + "%s wrong return mask specified\n", __func__); + + ksft_test_result(pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + 0, 0xFFF, PAGE_IS_WRITTEN, 0, PAGE_IS_WRITTEN) < 0, + "%s mixture of correct and wrong flag\n", __func__); + + ksft_test_result(pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + 0, 0, 0, PAGEMAP_BITS_ALL, PAGE_IS_WRITTEN) < 0, + "%s PAGEMAP_BITS_ALL cannot be specified with PM_SCAN_OP_WP\n", __func__); + + /* 2. Clear area with larger vec size */ + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + ksft_test_result(ret >= 0, "%s Clear area with larger vec size\n", __func__); + + /* 3. Repeated pattern of written and non-written pages */ + for (i = 0; i < mem_size; i += 2 * page_size) + mem[i]++; + + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, 0, PAGE_IS_WRITTEN, 0, + 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ksft_test_result(ret == mem_size/(page_size * 2), + "%s Repeated pattern of written and non-written pages\n", __func__); + + /* 4. Repeated pattern of written and non-written pages in parts */ + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + num_pages/2 - 2, PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ret2 = pagemap_ioctl(mem, mem_size, vec, 2, PM_SCAN_OP_GET, 0, PAGE_IS_WRITTEN, 0, 0, + PAGE_IS_WRITTEN); + if (ret2 < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret2, errno, strerror(errno)); + + ret3 = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + 0, PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret3 < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret3, errno, strerror(errno)); + + ksft_test_result((ret + ret3) == num_pages/2 && ret2 == 2, + "%s Repeated pattern of written and non-written pages in parts\n", + __func__); + + /* 5. Repeated pattern of written and non-written pages max_pages */ + for (i = 0; i < mem_size; i += 2 * page_size) + mem[i]++; + mem[(mem_size/page_size - 1) * page_size]++; + + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + num_pages/2, PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ret2 = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + 0, PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret2 < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret2, errno, strerror(errno)); + + ksft_test_result(ret == num_pages/2 && ret2 == 1, + "%s Repeated pattern of written and non-written pages max_pages\n", + __func__); + + /* 6. only get 2 dirty pages and clear them as well */ + vec_size = mem_size/page_size; + memset(mem, -1, mem_size); + + /* get and clear second and third pages */ + ret = pagemap_ioctl(mem + page_size, 2 * page_size, vec, 1, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + 2, PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ret2 = pagemap_ioctl(mem, mem_size, vec2, vec_size, PM_SCAN_OP_GET, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret2 < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret2, errno, strerror(errno)); + + ksft_test_result(ret == 1 && vec[0].len == 2 && + vec[0].start == (uintptr_t)(mem + page_size) && + ret2 == 2 && vec2[0].len == 1 && vec2[0].start == (uintptr_t)mem && + vec2[1].len == vec_size - 3 && + vec2[1].start == (uintptr_t)(mem + 3 * page_size), + "%s only get 2 written pages and clear them as well\n", __func__); + + wp_free(mem, mem_size); + munmap(mem, mem_size); + + /* 7. Two regions */ + m[0] = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (m[0] == MAP_FAILED) + ksft_exit_fail_msg("error nomem\n"); + m[1] = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (m[1] == MAP_FAILED) + ksft_exit_fail_msg("error nomem\n"); + + wp_init(m[0], mem_size); + wp_init(m[1], mem_size); + wp_addr_range(m[0], mem_size); + wp_addr_range(m[1], mem_size); + + memset(m[0], 'a', mem_size); + memset(m[1], 'b', mem_size); + + wp_addr_range(m[0], mem_size); + + ret = pagemap_ioctl(m[1], mem_size, vec, 1, PM_SCAN_OP_GET, 0, PAGE_IS_WRITTEN, 0, 0, + PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ksft_test_result(ret == 1 && vec[0].len == mem_size/page_size, + "%s Two regions\n", __func__); + + wp_free(m[0], mem_size); + wp_free(m[1], mem_size); + munmap(m[0], mem_size); + munmap(m[1], mem_size); + + free(vec); + free(vec2); + + /* 8. Smaller vec */ + mem_size = 1050 * page_size; + vec_size = mem_size/(page_size*2); + + vec = malloc(sizeof(struct page_region) * vec_size); + if (!vec) + ksft_exit_fail_msg("error nomem\n"); + + mem = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (mem == MAP_FAILED) + ksft_exit_fail_msg("error nomem\n"); + + wp_init(mem, mem_size); + wp_addr_range(mem, mem_size); + + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + for (i = 0; i < mem_size/page_size; i += 2) + mem[i * page_size]++; + + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + mem_size/(page_size*5), PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + total_pages += ret; + + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + mem_size/(page_size*5), PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + total_pages += ret; + + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + mem_size/(page_size*5), PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + total_pages += ret; + + ksft_test_result(total_pages == mem_size/(page_size*2), "%s Smaller max_pages\n", __func__); + + free(vec); + wp_free(mem, mem_size); + munmap(mem, mem_size); + total_pages = 0; + + /* 9. Smaller vec */ + mem_size = 10000 * page_size; + vec_size = 50;//mem_size/(page_size * 10); + + vec = malloc(sizeof(struct page_region) * vec_size); + if (!vec) + ksft_exit_fail_msg("error nomem\n"); + + mem = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (mem == MAP_FAILED) + ksft_exit_fail_msg("error nomem\n"); + + wp_init(mem, mem_size); + wp_addr_range(mem, mem_size); + + for (count = 0; count < TEST_ITERATIONS; count++) { + total_writes = total_reads = 0; + + for (i = 0; i < mem_size; i += page_size) { + if (rand() % 2) { + mem[i]++; + total_writes++; + } + } + + while (total_reads < total_writes) { + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, + PM_SCAN_OP_GET | PM_SCAN_OP_WP, + 0, PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + if (ret > vec_size) + break; + + reads = get_reads(vec, ret); + total_reads += reads; + } + + if (total_reads != total_writes) + break; + } + + ksft_test_result(count == TEST_ITERATIONS, "Smaller vec %d %d\n", ret, vec_size); + + free(vec); + wp_free(mem, mem_size); + munmap(mem, mem_size); + + return 0; +} + +int base_tests(char *prefix, char *mem, int mem_size, int skip) +{ + int vec_size, written; + struct page_region *vec, *vec2; + + if (skip) { + ksft_test_result_skip("%s all new pages must not be written (dirty)\n", prefix); + ksft_test_result_skip("%s all pages must be written (dirty)\n", prefix); + ksft_test_result_skip("%s all pages dirty other than first and the last one\n", + prefix); + ksft_test_result_skip("%s PM_SCAN_OP_WP\n", prefix); + ksft_test_result_skip("%s only middle page dirty\n", prefix); + ksft_test_result_skip("%s only two middle pages dirty\n", prefix); + return 0; + } + + vec_size = mem_size/page_size; + vec = malloc(sizeof(struct page_region) * vec_size); + vec2 = malloc(sizeof(struct page_region) * vec_size); + + /* 1. all new pages must be not be written (dirty) */ + written = pagemap_ioctl(mem, mem_size, vec, 1, PM_SCAN_OP_GET | PM_SCAN_OP_WP, vec_size - 2, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (written < 0) + ksft_exit_fail_msg("error %d %d %s\n", written, errno, strerror(errno)); + + ksft_test_result(written == 0, "%s all new pages must not be written (dirty)\n", prefix); + + /* 2. all pages must be written */ + memset(mem, -1, mem_size); + + written = pagemap_ioctl(mem, mem_size, vec, 1, PM_SCAN_OP_GET, 0, PAGE_IS_WRITTEN, 0, 0, + PAGE_IS_WRITTEN); + if (written < 0) + ksft_exit_fail_msg("error %d %d %s\n", written, errno, strerror(errno)); + + ksft_test_result(written == 1 && vec[0].len == mem_size/page_size, + "%s all pages must be written (dirty)\n", prefix); + + /* 3. all pages dirty other than first and the last one */ + written = pagemap_ioctl(mem, mem_size, vec, 1, PM_SCAN_OP_GET | PM_SCAN_OP_WP, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (written < 0) + ksft_exit_fail_msg("error %d %d %s\n", written, errno, strerror(errno)); + + memset(mem + page_size, 0, mem_size - (2 * page_size)); + + written = pagemap_ioctl(mem, mem_size, vec, 1, PM_SCAN_OP_GET | PM_SCAN_OP_WP, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (written < 0) + ksft_exit_fail_msg("error %d %d %s\n", written, errno, strerror(errno)); + + ksft_test_result(written == 1 && vec[0].len >= vec_size - 2 && vec[0].len <= vec_size, + "%s all pages dirty other than first and the last one\n", prefix); + + written = pagemap_ioctl(mem, mem_size, vec, 1, PM_SCAN_OP_GET, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (written < 0) + ksft_exit_fail_msg("error %d %d %s\n", written, errno, strerror(errno)); + + ksft_test_result(written == 0, + "%s PM_SCAN_OP_WP\n", prefix); + + /* 4. only middle page dirty */ + written = pagemap_ioctl(mem, mem_size, vec, 1, PM_SCAN_OP_GET | PM_SCAN_OP_WP, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (written < 0) + ksft_exit_fail_msg("error %d %d %s\n", written, errno, strerror(errno)); + + mem[vec_size/2 * page_size]++; + + written = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, 0, PAGE_IS_WRITTEN, + 0, 0, PAGE_IS_WRITTEN); + if (written < 0) + ksft_exit_fail_msg("error %d %d %s\n", written, errno, strerror(errno)); + + ksft_test_result(written == 1 && vec[0].len >= 1, + "%s only middle page dirty\n", prefix); + + /* 5. only two middle pages dirty and walk over only middle pages */ + written = pagemap_ioctl(mem, mem_size, vec, 1, PM_SCAN_OP_GET | PM_SCAN_OP_WP, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (written < 0) + ksft_exit_fail_msg("error %d %d %s\n", written, errno, strerror(errno)); + + mem[vec_size/2 * page_size]++; + mem[(vec_size/2 + 1) * page_size]++; + + written = pagemap_ioctl(&mem[vec_size/2 * page_size], 2 * page_size, vec, 1, PM_SCAN_OP_GET, + 0, PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (written < 0) + ksft_exit_fail_msg("error %d %d %s\n", written, errno, strerror(errno)); + + ksft_test_result(written == 1 && vec[0].start == (uintptr_t)(&mem[vec_size/2 * page_size]) + && vec[0].len == 2, + "%s only two middle pages dirty\n", prefix); + + free(vec); + free(vec2); + return 0; +} + +void *gethugepage(int map_size) +{ + int ret; + char *map; + + map = memalign(hpage_size, map_size); + if (!map) + ksft_exit_fail_msg("memalign failed %d %s\n", errno, strerror(errno)); + + ret = madvise(map, map_size, MADV_HUGEPAGE); + if (ret) + return NULL; + + memset(map, 0, map_size); + + return map; +} + +int hpage_unit_tests(void) +{ + char *map; + int ret, ret2; + size_t num_pages = 10; + int map_size = hpage_size * num_pages; + int vec_size = map_size/page_size; + struct page_region *vec, *vec2; + + vec = malloc(sizeof(struct page_region) * vec_size); + vec2 = malloc(sizeof(struct page_region) * vec_size); + if (!vec || !vec2) + ksft_exit_fail_msg("malloc failed\n"); + + map = gethugepage(map_size); + if (map) { + wp_init(map, map_size); + wp_addr_range(map, map_size); + + /* 1. all new huge page must not be written (dirty) */ + ret = pagemap_ioctl(map, map_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ksft_test_result(ret == 0, "%s all new huge page must not be written (dirty)\n", + __func__); + + /* 2. all the huge page must not be written */ + ret = pagemap_ioctl(map, map_size, vec, vec_size, PM_SCAN_OP_GET, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ksft_test_result(ret == 0, "%s all the huge page must not be written\n", __func__); + + /* 3. all the huge page must be written and clear dirty as well */ + memset(map, -1, map_size); + ret = pagemap_ioctl(map, map_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + 0, PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ksft_test_result(ret == 1 && vec[0].start == (uintptr_t)map && + vec[0].len == vec_size && vec[0].bitmap == PAGE_IS_WRITTEN, + "%s all the huge page must be written and clear\n", __func__); + + /* 4. only middle page written */ + wp_free(map, map_size); + free(map); + map = gethugepage(map_size); + wp_init(map, map_size); + wp_addr_range(map, map_size); + map[vec_size/2 * page_size]++; + + ret = pagemap_ioctl(map, map_size, vec, vec_size, PM_SCAN_OP_GET, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ksft_test_result(ret == 1 && vec[0].len > 0, + "%s only middle page written\n", __func__); + + wp_free(map, map_size); + free(map); + } else { + ksft_test_result_skip("%s all new huge page must be written\n", __func__); + ksft_test_result_skip("%s all the huge page must not be written\n", __func__); + ksft_test_result_skip("%s all the huge page must be written and clear\n", __func__); + ksft_test_result_skip("%s only middle page written\n", __func__); + } + + /* 5. clear first half of huge page */ + map = gethugepage(map_size); + if (map) { + wp_init(map, map_size); + wp_addr_range(map, map_size); + + memset(map, 0, map_size); + + wp_addr_range(map, map_size/2); + + ret = pagemap_ioctl(map, map_size, vec, vec_size, PM_SCAN_OP_GET, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ksft_test_result(ret == 1 && vec[0].len == vec_size/2 && + vec[0].start == (uintptr_t)(map + map_size/2), + "%s clear first half of huge page\n", __func__); + wp_free(map, map_size); + free(map); + } else { + ksft_test_result_skip("%s clear first half of huge page\n", __func__); + } + + /* 6. clear first half of huge page with limited buffer */ + map = gethugepage(map_size); + if (map) { + wp_init(map, map_size); + wp_addr_range(map, map_size); + + memset(map, 0, map_size); + + ret = pagemap_ioctl(map, map_size, vec, vec_size, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + vec_size/2, PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ret = pagemap_ioctl(map, map_size, vec, vec_size, PM_SCAN_OP_GET, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ksft_test_result(ret == 1 && vec[0].len == vec_size/2 && + vec[0].start == (uintptr_t)(map + map_size/2), + "%s clear first half of huge page with limited buffer\n", + __func__); + wp_free(map, map_size); + free(map); + } else { + ksft_test_result_skip("%s clear first half of huge page with limited buffer\n", + __func__); + } + + /* 7. clear second half of huge page */ + map = gethugepage(map_size); + if (map) { + wp_init(map, map_size); + wp_addr_range(map, map_size); + + memset(map, -1, map_size); + + ret = pagemap_ioctl(map + map_size/2, map_size/2, vec, vec_size, + PM_SCAN_OP_GET | PM_SCAN_OP_WP, vec_size/2, PAGE_IS_WRITTEN, 0, + 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ret = pagemap_ioctl(map, map_size, vec, vec_size, PM_SCAN_OP_GET, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ksft_test_result(ret == 1 && vec[0].len == vec_size/2, + "%s clear second half huge page\n", __func__); + wp_free(map, map_size); + free(map); + } else { + ksft_test_result_skip("%s clear second half huge page\n", __func__); + } + + /* 8. get half huge page */ + map = gethugepage(map_size); + if (map) { + wp_init(map, map_size); + wp_addr_range(map, map_size); + + memset(map, -1, map_size); + usleep(100); + + ret = pagemap_ioctl(map, map_size, vec, 1, PM_SCAN_OP_GET | PM_SCAN_OP_WP, + hpage_size/(2*page_size), PAGE_IS_WRITTEN, 0, 0, + PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ksft_test_result(ret == 1 && vec[0].len == hpage_size/(2*page_size), + "%s get half huge page\n", __func__); + + ret2 = pagemap_ioctl(map, map_size, vec, vec_size, PM_SCAN_OP_GET, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN); + if (ret2 < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret2, errno, strerror(errno)); + + ksft_test_result(ret2 == 1 && vec[0].len == (map_size - hpage_size/2)/page_size, + "%s get half huge page\n", __func__); + + wp_free(map, map_size); + free(map); + } else { + ksft_test_result_skip("%s get half huge page\n", __func__); + ksft_test_result_skip("%s get half huge page\n", __func__); + } + + free(vec); + free(vec2); + return 0; +} + +int unmapped_region_tests(void) +{ + void *start = (void *)0x10000000; + int written, len = 0x00040000; + int vec_size = len / page_size; + struct page_region *vec = malloc(sizeof(struct page_region) * vec_size); + + /* 1. Get written pages */ + written = pagemap_ioctl(start, len, vec, vec_size, PM_SCAN_OP_GET, 0, + PAGEMAP_NON_WRITTEN_BITS, 0, 0, PAGEMAP_NON_WRITTEN_BITS); + if (written < 0) + ksft_exit_fail_msg("error %d %d %s\n", written, errno, strerror(errno)); + + ksft_test_result(written >= 0, "%s Get status of pages\n", __func__); + + free(vec); + return 0; +} + +static void test_simple(void) +{ + int i; + char *map; + struct page_region vec; + + map = aligned_alloc(page_size, page_size); + if (!map) + ksft_exit_fail_msg("aligned_alloc failed\n"); + + wp_init(map, page_size); + wp_addr_range(map, page_size); + + for (i = 0 ; i < TEST_ITERATIONS; i++) { + if (pagemap_ioctl(map, page_size, &vec, 1, PM_SCAN_OP_GET, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN) == 1) { + ksft_print_msg("written bit was 1, but should be 0 (i=%d)\n", i); + break; + } + + wp_addr_range(map, page_size); + /* Write something to the page to get the written bit enabled on the page */ + map[0]++; + + if (pagemap_ioctl(map, page_size, &vec, 1, PM_SCAN_OP_GET, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN) == 0) { + ksft_print_msg("written bit was 0, but should be 1 (i=%d)\n", i); + break; + } + + wp_addr_range(map, page_size); + } + wp_free(map, page_size); + free(map); + + ksft_test_result(i == TEST_ITERATIONS, "Test %s\n", __func__); +} + +int sanity_tests(void) +{ + int mem_size, vec_size, ret, fd, i, buf_size; + struct page_region *vec; + char *mem, *fmem; + struct stat sbuf; + + /* 1. wrong operation */ + mem_size = 10 * page_size; + vec_size = mem_size / page_size; + + vec = malloc(sizeof(struct page_region) * vec_size); + mem = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (mem == MAP_FAILED || vec == MAP_FAILED) + ksft_exit_fail_msg("error nomem\n"); + + wp_init(mem, mem_size); + wp_addr_range(mem, mem_size); + + ksft_test_result(pagemap_ioctl(mem, mem_size, vec, vec_size, + PM_SCAN_OP_GET | PM_SCAN_OP_WP, 0, PAGEMAP_BITS_ALL, 0, 0, + PAGEMAP_BITS_ALL) < 0, + "%s clear op can only be specified with PAGE_IS_WRITTEN\n", __func__); + ksft_test_result(pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, 0, + PAGEMAP_BITS_ALL, 0, 0, PAGEMAP_BITS_ALL) >= 0, + "%s required_mask specified\n", __func__); + ksft_test_result(pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, 0, + 0, PAGEMAP_BITS_ALL, 0, PAGEMAP_BITS_ALL) >= 0, + "%s anyof_mask specified\n", __func__); + ksft_test_result(pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, 0, + 0, 0, PAGEMAP_BITS_ALL, PAGEMAP_BITS_ALL) >= 0, + "%s excluded_mask specified\n", __func__); + ksft_test_result(pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, 0, + PAGEMAP_BITS_ALL, PAGEMAP_BITS_ALL, 0, + PAGEMAP_BITS_ALL) >= 0, + "%s required_mask and anyof_mask specified\n", __func__); + wp_free(mem, mem_size); + munmap(mem, mem_size); + + /* 2. Get sd and present pages with anyof_mask */ + mem = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (mem == MAP_FAILED) + ksft_exit_fail_msg("error nomem\n"); + wp_init(mem, mem_size); + wp_addr_range(mem, mem_size); + + memset(mem, 0, mem_size); + + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, 0, + 0, PAGEMAP_BITS_ALL, 0, PAGEMAP_BITS_ALL); + ksft_test_result(ret >= 0 && vec[0].start == (uintptr_t)mem && vec[0].len == vec_size && + vec[0].bitmap == (PAGE_IS_WRITTEN | PAGE_IS_PRESENT), + "%s Get sd and present pages with anyof_mask\n", __func__); + + /* 3. Get sd and present pages with required_mask */ + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, 0, + PAGEMAP_BITS_ALL, 0, 0, PAGEMAP_BITS_ALL); + ksft_test_result(ret >= 0 && vec[0].start == (uintptr_t)mem && vec[0].len == vec_size && + vec[0].bitmap == (PAGE_IS_WRITTEN | PAGE_IS_PRESENT), + "%s Get all the pages with required_mask\n", __func__); + + /* 4. Get sd and present pages with required_mask and anyof_mask */ + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, 0, + PAGE_IS_WRITTEN, PAGE_IS_PRESENT, 0, PAGEMAP_BITS_ALL); + ksft_test_result(ret >= 0 && vec[0].start == (uintptr_t)mem && vec[0].len == vec_size && + vec[0].bitmap == (PAGE_IS_WRITTEN | PAGE_IS_PRESENT), + "%s Get sd and present pages with required_mask and anyof_mask\n", + __func__); + + /* 5. Don't get sd pages */ + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, 0, + 0, 0, PAGE_IS_WRITTEN, PAGEMAP_BITS_ALL); + ksft_test_result(ret == 0, "%s Don't get sd pages\n", __func__); + + /* 6. Don't get present pages */ + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, 0, + 0, 0, PAGE_IS_PRESENT, PAGEMAP_BITS_ALL); + ksft_test_result(ret == 0, "%s Don't get present pages\n", __func__); + + wp_free(mem, mem_size); + munmap(mem, mem_size); + + /* 8. Find written present pages with return mask */ + mem = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (mem == MAP_FAILED) + ksft_exit_fail_msg("error nomem\n"); + wp_init(mem, mem_size); + wp_addr_range(mem, mem_size); + + memset(mem, 0, mem_size); + + ret = pagemap_ioctl(mem, mem_size, vec, vec_size, PM_SCAN_OP_GET, 0, + 0, PAGEMAP_BITS_ALL, 0, PAGE_IS_WRITTEN); + ksft_test_result(ret >= 0 && vec[0].start == (uintptr_t)mem && vec[0].len == vec_size && + vec[0].bitmap == PAGE_IS_WRITTEN, + "%s Find written present pages with return mask\n", __func__); + wp_free(mem, mem_size); + munmap(mem, mem_size); + + /* 9. Memory mapped file */ + fd = open(__FILE__, O_RDONLY); + if (fd < 0) + ksft_exit_fail_msg("%s Memory mapped file\n"); + + ret = stat(__FILE__, &sbuf); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + fmem = mmap(NULL, sbuf.st_size, PROT_READ, MAP_PRIVATE, fd, 0); + if (fmem == MAP_FAILED) + ksft_exit_fail_msg("error nomem %ld %s\n", errno, strerror(errno)); + + ret = pagemap_ioctl(fmem, sbuf.st_size, vec, vec_size, PM_SCAN_OP_GET, 0, + 0, PAGEMAP_NON_WRITTEN_BITS, 0, PAGEMAP_NON_WRITTEN_BITS); + + ksft_test_result(ret >= 0 && vec[0].start == (uintptr_t)fmem && + vec[0].len == ceilf((float)sbuf.st_size/page_size) && + vec[0].bitmap == PAGE_IS_FILE, + "%s Memory mapped file\n", __func__); + + munmap(fmem, sbuf.st_size); + close(fd); + + /* 10. Create and read/write to a memory mapped file*/ + buf_size = page_size * 10; + + fd = open(__FILE__".tmp2", O_RDWR | O_CREAT, 0777); + if (fd < 0) + ksft_exit_fail_msg("Create and read/write to a memory mapped file: %s\n", + strerror(errno)); + + for (i = 0; i < buf_size; i++) + if (write(fd, "c", 1) < 0) + ksft_exit_fail_msg("Create and read/write to a memory mapped file\n"); + + fmem = mmap(NULL, buf_size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); + if (fmem == MAP_FAILED) + ksft_exit_fail_msg("error nomem %ld %s\n", errno, strerror(errno)); + + wp_init(fmem, buf_size); + wp_addr_range(fmem, buf_size); + + for (i = 0; i < buf_size; i++) + fmem[i] = i; + + ret = pagemap_ioctl(fmem, buf_size, vec, vec_size, PM_SCAN_OP_GET, 0, + PAGE_IS_WRITTEN | PAGE_IS_FILE, PAGE_IS_PRESENT | PAGE_IS_SWAPPED, 0, + PAGEMAP_BITS_ALL); + + ksft_test_result(ret >= 0 && vec[0].start == (uintptr_t)fmem && + vec[0].len == (buf_size/page_size) && + (vec[0].bitmap | PAGE_IS_WRITTEN) && (vec[0].bitmap | PAGE_IS_FILE), + "%s Read/write to private memory mapped file\n", __func__); + + wp_free(fmem, buf_size); + munmap(fmem, buf_size); + close(fd); + + free(vec); + return 0; +} + +int mprotect_tests(void) +{ + int ret; + char *mem, *mem2; + struct page_region vec; + int pagemap_fd = open("/proc/self/pagemap", O_RDONLY); + + if (pagemap_fd < 0) { + fprintf(stderr, "open() failed\n"); + exit(1); + } + + /* 1. Map two pages */ + mem = mmap(0, 2 * page_size, PROT_READ|PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (mem == MAP_FAILED) + ksft_exit_fail_msg("error nomem\n"); + wp_init(mem, 2 * page_size); + wp_addr_range(mem, 2 * page_size); + + /* Populate both pages. */ + memset(mem, 1, 2 * page_size); + + ret = pagemap_ioctl(mem, 2 * page_size, &vec, 1, PM_SCAN_OP_GET, 0, PAGE_IS_WRITTEN, + 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ksft_test_result(ret == 1 && vec.len == 2, "%s Both pages written\n", __func__); + + /* 2. Start tracking */ + wp_addr_range(mem, 2 * page_size); + + ksft_test_result(pagemap_ioctl(mem, 2 * page_size, &vec, 1, PM_SCAN_OP_GET, 0, + PAGE_IS_WRITTEN, 0, 0, PAGE_IS_WRITTEN) == 0, + "%s Both pages are not written (dirty)\n", __func__); + + /* 3. Remap the second page */ + mem2 = mmap(mem + page_size, page_size, PROT_READ|PROT_WRITE, + MAP_PRIVATE|MAP_ANON|MAP_FIXED, -1, 0); + if (mem2 == MAP_FAILED) + ksft_exit_fail_msg("error nomem\n"); + wp_init(mem2, page_size); + wp_addr_range(mem2, page_size); + + /* Protect + unprotect. */ + mprotect(mem, page_size, PROT_NONE); + mprotect(mem, 2 * page_size, PROT_READ); + mprotect(mem, 2 * page_size, PROT_READ|PROT_WRITE); + + /* Modify both pages. */ + memset(mem, 2, 2 * page_size); + + /* Protect + unprotect. */ + mprotect(mem, page_size, PROT_NONE); + mprotect(mem, page_size, PROT_READ); + mprotect(mem, page_size, PROT_READ|PROT_WRITE); + + ret = pagemap_ioctl(mem, 2 * page_size, &vec, 1, PM_SCAN_OP_GET, 0, PAGE_IS_WRITTEN, + 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ksft_test_result(ret == 1 && vec.len == 2, + "%s Both pages written after remap and mprotect\n", __func__); + + /* 4. Clear and make the pages written */ + wp_addr_range(mem, 2 * page_size); + + memset(mem, 'A', 2 * page_size); + + ret = pagemap_ioctl(mem, 2 * page_size, &vec, 1, PM_SCAN_OP_GET, 0, PAGE_IS_WRITTEN, + 0, 0, PAGE_IS_WRITTEN); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + ksft_test_result(ret == 1 && vec.len == 2, + "%s Clear and make the pages written\n", __func__); + + wp_free(mem, 2 * page_size); + munmap(mem, 2 * page_size); + return 0; +} + +/* transact test */ +static const unsigned int nthreads = 6, pages_per_thread = 32, access_per_thread = 8; +static pthread_barrier_t start_barrier, end_barrier; +static unsigned int extra_thread_faults; +static unsigned int iter_count = 1000; +static volatile int finish; + +static ssize_t get_dirty_pages_reset(char *mem, unsigned int count, + int reset, int page_size) +{ + struct pm_scan_arg arg = {0}; + struct page_region rgns[256]; + int i, j, cnt, ret; + + arg.size = sizeof(struct pm_scan_arg); + arg.start = (uintptr_t)mem; + arg.max_pages = count; + arg.len = count * page_size; + arg.vec = (uintptr_t)rgns; + arg.vec_len = sizeof(rgns) / sizeof(*rgns); + arg.flags = PM_SCAN_OP_GET; + if (reset) + arg.flags |= PM_SCAN_OP_WP; + arg.required_mask = PAGE_IS_WRITTEN; + arg.return_mask = PAGE_IS_WRITTEN; + + ret = ioctl(pagemap_fd, PAGEMAP_SCAN, &arg); + if (ret < 0) + ksft_exit_fail_msg("ioctl failed\n"); + + cnt = 0; + for (i = 0; i < ret; ++i) { + if (rgns[i].bitmap != PAGE_IS_WRITTEN) + ksft_exit_fail_msg("wrong bitmap\n"); + + for (j = 0; j < rgns[i].len; ++j) + cnt++; + } + + return cnt; +} + +void *thread_proc(void *mem) +{ + int *m = mem; + long curr_faults, faults; + struct rusage r; + unsigned int i; + int ret; + + if (getrusage(RUSAGE_THREAD, &r)) + ksft_exit_fail_msg("getrusage\n"); + + curr_faults = r.ru_minflt; + + while (!finish) { + ret = pthread_barrier_wait(&start_barrier); + if (ret && ret != PTHREAD_BARRIER_SERIAL_THREAD) + ksft_exit_fail_msg("pthread_barrier_wait\n"); + + for (i = 0; i < access_per_thread; ++i) + __atomic_add_fetch(m + i * (0x1000 / sizeof(*m)), 1, __ATOMIC_SEQ_CST); + + ret = pthread_barrier_wait(&end_barrier); + if (ret && ret != PTHREAD_BARRIER_SERIAL_THREAD) + ksft_exit_fail_msg("pthread_barrier_wait\n"); + + if (getrusage(RUSAGE_THREAD, &r)) + ksft_exit_fail_msg("getrusage\n"); + + faults = r.ru_minflt - curr_faults; + if (faults < access_per_thread) + ksft_exit_fail_msg("faults < access_per_thread"); + + __atomic_add_fetch(&extra_thread_faults, faults - access_per_thread, + __ATOMIC_SEQ_CST); + curr_faults = r.ru_minflt; + } + + return NULL; +} + +static void transact_test(int page_size) +{ + unsigned int i, count, extra_pages; + pthread_t th; + char *mem; + int ret, c; + + if (pthread_barrier_init(&start_barrier, NULL, nthreads + 1)) + ksft_exit_fail_msg("pthread_barrier_init\n"); + + if (pthread_barrier_init(&end_barrier, NULL, nthreads + 1)) + ksft_exit_fail_msg("pthread_barrier_init\n"); + + mem = mmap(NULL, 0x1000 * nthreads * pages_per_thread, PROT_READ | PROT_WRITE, + MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); + if (mem == MAP_FAILED) + ksft_exit_fail_msg("Error mmap %s.\n", strerror(errno)); + + wp_init(mem, 0x1000 * nthreads * pages_per_thread); + wp_addr_range(mem, 0x1000 * nthreads * pages_per_thread); + + memset(mem, 0, 0x1000 * nthreads * pages_per_thread); + + count = get_dirty_pages_reset(mem, nthreads * pages_per_thread, 1, page_size); + ksft_test_result(count > 0, "%s count %d\n", __func__, count); + count = get_dirty_pages_reset(mem, nthreads * pages_per_thread, 1, page_size); + ksft_test_result(count == 0, "%s count %d\n", __func__, count); + + finish = 0; + for (i = 0; i < nthreads; ++i) + pthread_create(&th, NULL, thread_proc, mem + 0x1000 * i * pages_per_thread); + + extra_pages = 0; + for (i = 0; i < iter_count; ++i) { + count = 0; + + ret = pthread_barrier_wait(&start_barrier); + if (ret && ret != PTHREAD_BARRIER_SERIAL_THREAD) + ksft_exit_fail_msg("pthread_barrier_wait\n"); + + count = get_dirty_pages_reset(mem, nthreads * pages_per_thread, 1, + page_size); + + ret = pthread_barrier_wait(&end_barrier); + if (ret && ret != PTHREAD_BARRIER_SERIAL_THREAD) + ksft_exit_fail_msg("pthread_barrier_wait\n"); + + if (count > nthreads * access_per_thread) + ksft_exit_fail_msg("Too big count %d expected %d, iter %d\n", + count, nthreads * access_per_thread, i); + + c = get_dirty_pages_reset(mem, nthreads * pages_per_thread, 1, page_size); + count += c; + + if (c > nthreads * access_per_thread) { + ksft_test_result_fail(" %s count > nthreads\n", __func__); + return; + } + + if (count != nthreads * access_per_thread) { + /* + * The purpose of the test is to make sure that no page updates are lost + * when the page updates and read-resetting soft dirty flags are performed + * in parallel. However, it is possible that the application will get the + * soft dirty flags twice on the two consecutive read-resets. This seems + * unavoidable as soft dirty flag is handled in software through page faults + * in kernel. While the updating the flags is supposed to be synchronized + * between page fault handling and read-reset, it is possible that + * read-reset happens after page fault PTE update but before the application + * re-executes write instruction. So read-reset gets the flag, clears write + * access and application gets page fault again for the same write. + */ + if (count < nthreads * access_per_thread) { + ksft_test_result_fail("Lost update, iter %d, %d vs %d.\n", i, count, + nthreads * access_per_thread); + return; + } + + extra_pages += count - nthreads * access_per_thread; + } + } + + pthread_barrier_wait(&start_barrier); + finish = 1; + pthread_barrier_wait(&end_barrier); + + ksft_test_result_pass("%s Extra pages %u (%.1lf%%), extra thread faults %d.\n", __func__, + extra_pages, + 100.0 * extra_pages / (iter_count * nthreads * access_per_thread), + extra_thread_faults); +} + +int main(void) +{ + int mem_size, shmid, buf_size, fd, i, ret; + char *mem, *map, *fmem; + struct stat sbuf; + + ksft_print_header(); + ksft_set_plan(92); + + page_size = getpagesize(); + hpage_size = read_pmd_pagesize(); + + pagemap_fd = open(PAGEMAP, O_RDWR); + if (pagemap_fd < 0) + return -EINVAL; + + if (init_uffd()) + ksft_exit_fail_msg("uffd init failed\n"); + + /* + * Written (dirty) PTE bit tests + */ + + /* 1. Sanity testing */ + sanity_tests_sd(); + + /* 2. Normal page testing */ + mem_size = 10 * page_size; + mem = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (mem == MAP_FAILED) + ksft_exit_fail_msg("error nomem\n"); + wp_init(mem, mem_size); + wp_addr_range(mem, mem_size); + + base_tests("Page testing:", mem, mem_size, 0); + + wp_free(mem, mem_size); + munmap(mem, mem_size); + + /* 3. Large page testing */ + mem_size = 512 * 10 * page_size; + mem = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (mem == MAP_FAILED) + ksft_exit_fail_msg("error nomem\n"); + wp_init(mem, mem_size); + wp_addr_range(mem, mem_size); + + base_tests("Large Page testing:", mem, mem_size, 0); + + wp_free(mem, mem_size); + munmap(mem, mem_size); + + /* 4. Huge page testing */ + map = gethugepage(hpage_size); + if (map) { + wp_init(map, hpage_size); + wp_addr_range(map, hpage_size); + base_tests("Huge page testing:", map, hpage_size, 0); + wp_free(map, hpage_size); + free(map); + } else { + base_tests("Huge page testing:", NULL, 0, 1); + } + + /* 5. Hugetlb page testing */ + mem_size = 2*1024*1024; + mem = gethugetlb_mem(mem_size, &shmid); + if (mem) { + wp_init(mem, mem_size); + wp_addr_range(mem, mem_size); + + base_tests("Hugetlb shmem testing:", mem, mem_size, 0); + + wp_free(mem, mem_size); + shmctl(shmid, IPC_RMID, NULL); + } else { + base_tests("Hugetlb shmem testing:", NULL, 0, 1); + } + + /* 6. Hugetlb page testing */ + mem = gethugetlb_mem(mem_size, NULL); + if (mem) { + wp_init(mem, mem_size); + wp_addr_range(mem, mem_size); + + base_tests("Hugetlb mem testing:", mem, mem_size, 0); + + wp_free(mem, mem_size); + } else { + base_tests("Hugetlb mem testing:", NULL, 0, 1); + } + + /* 7. file memory testing */ + buf_size = page_size * 10; + + fd = open(__FILE__".tmp0", O_RDWR | O_CREAT, 0777); + if (fd < 0) + ksft_exit_fail_msg("Create and read/write to a memory mapped file: %s\n", + strerror(errno)); + + for (i = 0; i < buf_size; i++) + if (write(fd, "c", 1) < 0) + ksft_exit_fail_msg("Create and read/write to a memory mapped file\n"); + + ret = stat(__FILE__".tmp0", &sbuf); + if (ret < 0) + ksft_exit_fail_msg("error %d %d %s\n", ret, errno, strerror(errno)); + + fmem = mmap(NULL, sbuf.st_size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); + if (fmem == MAP_FAILED) + ksft_exit_fail_msg("error nomem %ld %s\n", errno, strerror(errno)); + + wp_init(fmem, sbuf.st_size); + wp_addr_range(fmem, sbuf.st_size); + + base_tests("File memory testing:", fmem, sbuf.st_size, 0); + + wp_free(fmem, sbuf.st_size); + munmap(fmem, sbuf.st_size); + close(fd); + + /* 8. file memory testing */ + buf_size = page_size * 10; + + fd = memfd_create(__FILE__".tmp00", MFD_NOEXEC_SEAL); + if (fd < 0) + ksft_exit_fail_msg("Create and read/write to a memory mapped file: %s\n", + strerror(errno)); + + if (ftruncate(fd, buf_size)) + ksft_exit_fail_msg("Error ftruncate\n"); + + for (i = 0; i < buf_size; i++) + if (write(fd, "c", 1) < 0) + ksft_exit_fail_msg("Create and read/write to a memory mapped file\n"); + + fmem = mmap(NULL, buf_size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); + if (fmem == MAP_FAILED) + ksft_exit_fail_msg("error nomem %ld %s\n", errno, strerror(errno)); + + wp_init(fmem, buf_size); + wp_addr_range(fmem, buf_size); + + base_tests("File anonymous memory testing:", fmem, buf_size, 0); + + wp_free(fmem, buf_size); + munmap(fmem, buf_size); + close(fd); + + /* 9. Huge page tests */ + hpage_unit_tests(); + + /* 10. Iterative test */ + test_simple(); + + /* 11. Mprotect test */ + mprotect_tests(); + + /* 12. Transact test */ + transact_test(page_size); + + /* + * Other PTE bit tests + */ + + /* 1. Sanity testing */ + sanity_tests(); + + /* 2. Unmapped address test */ + unmapped_region_tests(); + + /* 3. Userfaultfd tests */ + userfaultfd_tests(); + + close(pagemap_fd); + return ksft_exit_pass(); +} diff --git a/tools/testing/selftests/mm/run_vmtests.sh b/tools/testing/selftests/mm/run_vmtests.sh old mode 100644 new mode 100755 index 3f26f6e15b2a..79028a7e855c --- a/tools/testing/selftests/mm/run_vmtests.sh +++ b/tools/testing/selftests/mm/run_vmtests.sh @@ -53,6 +53,8 @@ separated by spaces: memory protection key tests - soft_dirty test soft dirty page bit semantics +- pagemap + test pagemap_scan IOCTL - cow test copy-on-write semantics example: ./run_vmtests.sh -t "hmm mmap ksm" @@ -292,6 +294,8 @@ fi
CATEGORY="soft_dirty" run_test ./soft-dirty
+CATEGORY="pagemap" run_test ./pagemap_ioctl + # COW tests CATEGORY="cow" run_test ./cow
linux-kselftest-mirror@lists.linaro.org