From: Jeff Xu <jeffxu(a)google.com>
This is the first set of Memory mapping (VMA) protection patches using PKU.
* * *
Background:
As discussed previously in the kernel mailing list [1], V8 CFI [2] uses
PKU to protect memory, and Stephen Röttger proposes to extend the PKU to
memory mapping [3].
We're using PKU for in-process isolation to enforce control-flow integrity
for a JIT compiler. In our threat model, an attacker exploits a
vulnerability and has arbitrary read/write access to the whole process
space concurrently to other threads being executed. This attacker can
manipulate some arguments to syscalls from some threads.
Under such a powerful attack, we want to create a “safe/isolated”
thread environment. We assign dedicated PKUs to this thread,
and use those PKUs to protect the threads’ runtime environment.
The thread has exclusive access to its run-time memory. This
includes modifying the protection of the memory mapping, or
munmap the memory mapping after use. And the other threads
won’t be able to access the memory or modify the memory mapping
(VMA) belonging to the thread.
* * *
Proposed changes:
This patch introduces a new flag, PKEY_ENFORCE_API, to the pkey_alloc()
function. When a PKEY is created with this flag, it is enforced that any
thread that wants to make changes to the memory mapping (such as mprotect)
of the memory must have write access to the PKEY. PKEYs created without
this flag will continue to work as they do now, for backwards
compatibility.
Only PKEY created from user space can have the new flag set, the PKEY
allocated by the kernel internally will not have it. In other words,
ARCH_DEFAULT_PKEY(0) and execute_only_pkey won’t have this flag set,
and continue work as today.
This flag is checked only at syscall entry, such as mprotect/munmap in
this set of patches. It will not apply to other call paths. In other
words, if the kernel want to change attributes of VMA for some reasons,
the kernel is free to do that and not affected by this new flag.
This set of patch covers mprotect/munmap, I plan to work on other
syscalls after this.
* * *
Testing:
I have tested this patch on a Linux kernel 5.15, 6,1, and 6.4-rc1,
new selftest is added in: pkey_enforce_api.c
* * *
Discussion:
We believe that this patch provides a valuable security feature.
It allows us to create “safe/isolated” thread environments that are
protected from attackers with arbitrary read/write access to
the process space.
We believe that the interface change and the patch don't
introduce backwards compatibility risk.
We would like to disucss this patch in Linux kernel community
for feedback and support.
* * *
Reference:
[1]https://lore.kernel.org/all/202208221331.71C50A6F@keescook/
[2]https://docs.google.com/document/d/1O2jwK4dxI3nRcOJuPYkonhTkNQfbmwdvxQMyX…
[3]https://docs.google.com/document/d/1qqVoVfRiF2nRylL3yjZyCQvzQaej1HRPh3f5w…
Best Regards,
-Jeff Xu
Jeff Xu (6):
PKEY: Introduce PKEY_ENFORCE_API flag
PKEY: Add arch_check_pkey_enforce_api()
PKEY: Apply PKEY_ENFORCE_API to mprotect
PKEY:selftest pkey_enforce_api for mprotect
KEY: Apply PKEY_ENFORCE_API to munmap
PKEY:selftest pkey_enforce_api for munmap
arch/powerpc/include/asm/pkeys.h | 19 +-
arch/x86/include/asm/mmu.h | 7 +
arch/x86/include/asm/pkeys.h | 92 +-
arch/x86/mm/pkeys.c | 2 +-
include/linux/mm.h | 2 +-
include/linux/pkeys.h | 18 +-
include/uapi/linux/mman.h | 5 +
mm/mmap.c | 34 +-
mm/mprotect.c | 31 +-
mm/mremap.c | 6 +-
tools/testing/selftests/mm/Makefile | 1 +
tools/testing/selftests/mm/pkey_enforce_api.c | 1312 +++++++++++++++++
12 files changed, 1507 insertions(+), 22 deletions(-)
create mode 100644 tools/testing/selftests/mm/pkey_enforce_api.c
base-commit: ba0ad6ed89fd5dada3b7b65ef2b08e95d449d4ab
--
2.40.1.606.ga4b1b128d6-goog
This patch updates the cgroup-v2.rst file to include information about
the new "cpuset.cpus.reserve" control file as well as the new remote
partition.
Signed-off-by: Waiman Long <longman(a)redhat.com>
---
Documentation/admin-guide/cgroup-v2.rst | 92 +++++++++++++++++++++----
1 file changed, 79 insertions(+), 13 deletions(-)
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index f67c0829350b..3e9351c2cd27 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -2215,6 +2215,38 @@ Cpuset Interface Files
Its value will be affected by memory nodes hotplug events.
+ cpuset.cpus.reserve
+ A read-write multiple values file which exists only on root
+ cgroup.
+
+ It lists all the CPUs that are reserved for adjacent and remote
+ partitions created in the system. See the next section for
+ more information on what an adjacent or remote partitions is.
+
+ Creation of adjacent partition does not require touching this
+ control file as CPU reservation will be done automatically.
+ In order to create a remote partition, the CPUs needed by the
+ remote partition has to be written to this file first.
+
+ Due to the fact that "cpuset.cpus.reserve" holds reserve CPUs
+ that can be used by multiple partitions and automatic reservation
+ may also race with manual reservation, an extension prefixes of
+ "+" and "-" are allowed for this file to reduce race.
+
+ A "+" prefix can be used to indicate a list of additional
+ CPUs that are to be added without disturbing the CPUs that are
+ originally there. For example, if its current value is "3-4",
+ echoing ""+5" to it will change it to "3-5".
+
+ Once a remote partition is destroyed, its CPUs have to be
+ removed from this file or no other process can use them. A "-"
+ prefix can be used to remove a list of CPUs from it. However,
+ removing CPUs that are currently used in existing partitions
+ may cause those partitions to become invalid. A single "-"
+ character without any number can be used to indicate removal
+ of all the free CPUs not yet allocated to any partitions to
+ avoid accidental partition invalidation.
+
cpuset.cpus.partition
A read-write single value file which exists on non-root
cpuset-enabled cgroups. This flag is owned by the parent cgroup
@@ -2228,25 +2260,49 @@ Cpuset Interface Files
"isolated" Partition root without load balancing
========== =====================================
- The root cgroup is always a partition root and its state
- cannot be changed. All other non-root cgroups start out as
- "member".
+ A cpuset partition is a collection of cgroups with a partition
+ root at the top of the hierarchy and its descendants except
+ those that are separate partition roots themselves and their
+ descendants. A partition has exclusive access to the set of
+ CPUs allocated to it. Other cgroups outside of that partition
+ cannot use any CPUs in that set.
+
+ There are two types of partitions - adjacent and remote. The
+ parent of an adjacent partition must be a valid partition root.
+ Partition roots of adjacent partitions are all clustered around
+ the root cgroup. Creation of adjacent partition is done by
+ writing the desired partition type into "cpuset.cpus.partition".
+
+ A remote partition does not require a partition root parent.
+ So a remote partition can be formed far from the root cgroup.
+ However, its creation is a 2-step process. The CPUs needed
+ by a remote partition ("cpuset.cpus" of the partition root)
+ has to be written into "cpuset.cpus.reserve" of the root
+ cgroup first. After that, "isolated" can be written into
+ "cpuset.cpus.partition" of the partition root to form a remote
+ isolated partition which is the only supported remote partition
+ type for now.
+
+ All remote partitions are terminal as adjacent partition cannot
+ be created underneath it. With the way remote partition is
+ formed, it is not possible to create another valid remote
+ partition underneath it.
+
+ The root cgroup is always a partition root and its state cannot
+ be changed. All other non-root cgroups start out as "member".
When set to "root", the current cgroup is the root of a new
- partition or scheduling domain that comprises itself and all
- its descendants except those that are separate partition roots
- themselves and their descendants.
+ partition or scheduling domain.
- When set to "isolated", the CPUs in that partition root will
+ When set to "isolated", the CPUs in that partition will
be in an isolated state without any load balancing from the
scheduler. Tasks placed in such a partition with multiple
CPUs should be carefully distributed and bound to each of the
individual CPUs for optimal performance.
- The value shown in "cpuset.cpus.effective" of a partition root
- is the CPUs that the partition root can dedicate to a potential
- new child partition root. The new child subtracts available
- CPUs from its parent "cpuset.cpus.effective".
+ The value shown in "cpuset.cpus.effective" of a partition root is
+ the CPUs that are dedicated to that partition and not available
+ to cgroups outside of that partittion.
A partition root ("root" or "isolated") can be in one of the
two possible states - valid or invalid. An invalid partition
@@ -2270,8 +2326,8 @@ Cpuset Interface Files
In the case of an invalid partition root, a descriptive string on
why the partition is invalid is included within parentheses.
- For a partition root to become valid, the following conditions
- must be met.
+ For an adjacent partition root to be valid, the following
+ conditions must be met.
1) The "cpuset.cpus" is exclusive with its siblings , i.e. they
are not shared by any of its siblings (exclusivity rule).
@@ -2281,6 +2337,16 @@ Cpuset Interface Files
4) The "cpuset.cpus.effective" cannot be empty unless there is
no task associated with this partition.
+ For a remote partition root to be valid, the following conditions
+ must be met.
+
+ 1) The same exclusivity rule as adjacent partition root.
+ 2) The "cpuset.cpus" is not empty and all the CPUs must be
+ present in "cpuset.cpus.reserve" of the root cgroup and none
+ of them are allocated to another partition.
+ 3) The "cpuset.cpus" value must be present in all its ancestors
+ to ensure proper hierarchical cpu distribution.
+
External events like hotplug or changes to "cpuset.cpus" can
cause a valid partition root to become invalid and vice versa.
Note that a task cannot be moved to a cgroup with empty
--
2.31.1
From: Mark Brown <broonie(a)kernel.org>
[ Upstream commit dbcf76390eb9a65d5d0c37b0cd57335218564e37 ]
The ftrace selftests do not currently produce KTAP output, they produce a
custom format much nicer for human consumption. This means that when run in
automated test systems we just get a single result for the suite as a whole
rather than recording results for individual test cases, making it harder
to look at the test data and masking things like inappropriate skips.
Address this by adding support for KTAP output to the ftracetest script and
providing a trivial wrapper which will be invoked by the kselftest runner
to generate output in this format by default, users using ftracetest
directly will continue to get the existing output.
This is not the most elegant solution but it is simple and effective. I
did consider implementing this by post processing the existing output
format but that felt more complex and likely to result in all output being
lost if something goes seriously wrong during the run which would not be
helpful. I did also consider just writing a separate runner script but
there's enough going on with things like the signal handling for that to
seem like it would be duplicating too much.
Acked-by: Steven Rostedt (Google) <rostedt(a)goodmis.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat(a)kernel.org>
Tested-by: Masami Hiramatsu (Google) <mhiramat(a)kernel.org>
Signed-off-by: Mark Brown <broonie(a)kernel.org>
Signed-off-by: Shuah Khan <skhan(a)linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal(a)kernel.org>
---
tools/testing/selftests/ftrace/Makefile | 3 +-
tools/testing/selftests/ftrace/ftracetest | 63 ++++++++++++++++++-
.../testing/selftests/ftrace/ftracetest-ktap | 8 +++
3 files changed, 70 insertions(+), 4 deletions(-)
create mode 100755 tools/testing/selftests/ftrace/ftracetest-ktap
diff --git a/tools/testing/selftests/ftrace/Makefile b/tools/testing/selftests/ftrace/Makefile
index d6e106fbce11c..a1e955d2de4cc 100644
--- a/tools/testing/selftests/ftrace/Makefile
+++ b/tools/testing/selftests/ftrace/Makefile
@@ -1,7 +1,8 @@
# SPDX-License-Identifier: GPL-2.0
all:
-TEST_PROGS := ftracetest
+TEST_PROGS_EXTENDED := ftracetest
+TEST_PROGS := ftracetest-ktap
TEST_FILES := test.d settings
EXTRA_CLEAN := $(OUTPUT)/logs/*
diff --git a/tools/testing/selftests/ftrace/ftracetest b/tools/testing/selftests/ftrace/ftracetest
index c3311c8c40890..2506621e75dfb 100755
--- a/tools/testing/selftests/ftrace/ftracetest
+++ b/tools/testing/selftests/ftrace/ftracetest
@@ -13,6 +13,7 @@ echo "Usage: ftracetest [options] [testcase(s)] [testcase-directory(s)]"
echo " Options:"
echo " -h|--help Show help message"
echo " -k|--keep Keep passed test logs"
+echo " -K|--ktap Output in KTAP format"
echo " -v|--verbose Increase verbosity of test messages"
echo " -vv Alias of -v -v (Show all results in stdout)"
echo " -vvv Alias of -v -v -v (Show all commands immediately)"
@@ -85,6 +86,10 @@ parse_opts() { # opts
KEEP_LOG=1
shift 1
;;
+ --ktap|-K)
+ KTAP=1
+ shift 1
+ ;;
--verbose|-v|-vv|-vvv)
if [ $VERBOSE -eq -1 ]; then
usage "--console can not use with --verbose"
@@ -178,6 +183,7 @@ TEST_DIR=$TOP_DIR/test.d
TEST_CASES=`find_testcases $TEST_DIR`
LOG_DIR=$TOP_DIR/logs/`date +%Y%m%d-%H%M%S`/
KEEP_LOG=0
+KTAP=0
DEBUG=0
VERBOSE=0
UNSUPPORTED_RESULT=0
@@ -229,7 +235,7 @@ prlog() { # messages
newline=
shift
fi
- printf "$*$newline"
+ [ "$KTAP" != "1" ] && printf "$*$newline"
[ "$LOG_FILE" ] && printf "$*$newline" | strip_esc >> $LOG_FILE
}
catlog() { #file
@@ -260,11 +266,11 @@ TOTAL_RESULT=0
INSTANCE=
CASENO=0
+CASENAME=
testcase() { # testfile
CASENO=$((CASENO+1))
- desc=`grep "^#[ \t]*description:" $1 | cut -f2- -d:`
- prlog -n "[$CASENO]$INSTANCE$desc"
+ CASENAME=`grep "^#[ \t]*description:" $1 | cut -f2- -d:`
}
checkreq() { # testfile
@@ -277,40 +283,68 @@ test_on_instance() { # testfile
grep -q "^#[ \t]*flags:.*instance" $1
}
+ktaptest() { # result comment
+ if [ "$KTAP" != "1" ]; then
+ return
+ fi
+
+ local result=
+ if [ "$1" = "1" ]; then
+ result="ok"
+ else
+ result="not ok"
+ fi
+ shift
+
+ local comment=$*
+ if [ "$comment" != "" ]; then
+ comment="# $comment"
+ fi
+
+ echo $CASENO $result $INSTANCE$CASENAME $comment
+}
+
eval_result() { # sigval
case $1 in
$PASS)
prlog " [${color_green}PASS${color_reset}]"
+ ktaptest 1
PASSED_CASES="$PASSED_CASES $CASENO"
return 0
;;
$FAIL)
prlog " [${color_red}FAIL${color_reset}]"
+ ktaptest 0
FAILED_CASES="$FAILED_CASES $CASENO"
return 1 # this is a bug.
;;
$UNRESOLVED)
prlog " [${color_blue}UNRESOLVED${color_reset}]"
+ ktaptest 0 UNRESOLVED
UNRESOLVED_CASES="$UNRESOLVED_CASES $CASENO"
return $UNRESOLVED_RESULT # depends on use case
;;
$UNTESTED)
prlog " [${color_blue}UNTESTED${color_reset}]"
+ ktaptest 1 SKIP
UNTESTED_CASES="$UNTESTED_CASES $CASENO"
return 0
;;
$UNSUPPORTED)
prlog " [${color_blue}UNSUPPORTED${color_reset}]"
+ ktaptest 1 SKIP
UNSUPPORTED_CASES="$UNSUPPORTED_CASES $CASENO"
return $UNSUPPORTED_RESULT # depends on use case
;;
$XFAIL)
prlog " [${color_green}XFAIL${color_reset}]"
+ ktaptest 1 XFAIL
XFAILED_CASES="$XFAILED_CASES $CASENO"
return 0
;;
*)
prlog " [${color_blue}UNDEFINED${color_reset}]"
+ ktaptest 0 error
UNDEFINED_CASES="$UNDEFINED_CASES $CASENO"
return 1 # this must be a test bug
;;
@@ -371,6 +405,7 @@ __run_test() { # testfile
run_test() { # testfile
local testname=`basename $1`
testcase $1
+ prlog -n "[$CASENO]$INSTANCE$CASENAME"
if [ ! -z "$LOG_FILE" ] ; then
local testlog=`mktemp $LOG_DIR/${CASENO}-${testname}-log.XXXXXX`
else
@@ -405,6 +440,17 @@ run_test() { # testfile
# load in the helper functions
. $TEST_DIR/functions
+if [ "$KTAP" = "1" ]; then
+ echo "TAP version 13"
+
+ casecount=`echo $TEST_CASES | wc -w`
+ for t in $TEST_CASES; do
+ test_on_instance $t || continue
+ casecount=$((casecount+1))
+ done
+ echo "1..${casecount}"
+fi
+
# Main loop
for t in $TEST_CASES; do
run_test $t
@@ -439,6 +485,17 @@ prlog "# of unsupported: " `echo $UNSUPPORTED_CASES | wc -w`
prlog "# of xfailed: " `echo $XFAILED_CASES | wc -w`
prlog "# of undefined(test bug): " `echo $UNDEFINED_CASES | wc -w`
+if [ "$KTAP" = "1" ]; then
+ echo -n "# Totals:"
+ echo -n " pass:"`echo $PASSED_CASES | wc -w`
+ echo -n " faii:"`echo $FAILED_CASES | wc -w`
+ echo -n " xfail:"`echo $XFAILED_CASES | wc -w`
+ echo -n " xpass:0"
+ echo -n " skip:"`echo $UNTESTED_CASES $UNSUPPORTED_CASES | wc -w`
+ echo -n " error:"`echo $UNRESOLVED_CASES $UNDEFINED_CASES | wc -w`
+ echo
+fi
+
cleanup
# if no error, return 0
diff --git a/tools/testing/selftests/ftrace/ftracetest-ktap b/tools/testing/selftests/ftrace/ftracetest-ktap
new file mode 100755
index 0000000000000..b3284679ef3af
--- /dev/null
+++ b/tools/testing/selftests/ftrace/ftracetest-ktap
@@ -0,0 +1,8 @@
+#!/bin/sh -e
+# SPDX-License-Identifier: GPL-2.0-only
+#
+# ftracetest-ktap: Wrapper to integrate ftracetest with the kselftest runner
+#
+# Copyright (C) Arm Ltd., 2023
+
+./ftracetest -K
--
2.39.2
One can use "cpuset.cpus.partition" to create multiple scheduling domains
or to produce a set of isolated CPUs where load balancing is disabled.
The former use case is less common but the latter one can be frequently
used especially for the Telco use cases like DPDK.
The existing "isolated" partition can be used to produce isolated
CPUs if the applications have full control of a system. However, in a
containerized environment where all the apps are run in a container,
it is hard to distribute out isolated CPUs from the root down given
the unified hierarchy nature of cgroup v2.
The container running on isolated CPUs can be several layers down from
the root. The current partition feature requires that all the ancestors
of a leaf partition root must be parititon roots themselves. This can
be hard to configure.
This patch introduces a new type of partition called remote partition.
A remote partition is a partition whose parent is not a partition root
itself and its CPUs are acquired directly from available CPUs in the
top cpuset's cpuset.cpus.reserve. For contrast, the existing type of
partitions where their parents have to be valid partition roots are
referred to as adjacent partitions as they have to be clustered around
the cgroup root.
This patch enables only the creation of remote isolated partitions
for now.
The creation of a remote isolated partition is a 2-step process.
1) Reserve the CPUs needed by the remote partition by adding CPUs to
cpuset.cpus.reserve of the top cpuset.
2) Enable an isolated partition by
# echo isolated > cpuset.cpus.partition
Such a remote isolated partition P will only be valid if the following
conditions are true.
1) P/cpuset.cpus is a subset of top cpuset's cpuset.cpus.reserve.
2) All the CPUs in P/cpuset.cpus are present in the cpuset.cpus of
all its ancestors to ensure that those CPUs are properly granted
to P in a hierarchical manner.
3) None of the CPUs in P/cpuset.cpus have been acquired by other valid
partitions.
Like adjacent partitions, a remote partition has exclusive access to the
CPUs allocated to that partition. Because of the exclusive nature, none
of the cpuset.cpus of its sibling cpusets can contain any CPUs allocated
to the remote partition or the partition creation process will fail.
Signed-off-by: Waiman Long <longman(a)redhat.com>
---
kernel/cgroup/cpuset.c | 306 +++++++++++++++++++++++++++++++++++++++--
1 file changed, 291 insertions(+), 15 deletions(-)
diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
index 69abe95a9969..280018cddaba 100644
--- a/kernel/cgroup/cpuset.c
+++ b/kernel/cgroup/cpuset.c
@@ -98,6 +98,7 @@ enum prs_errcode {
PERR_NOCPUS,
PERR_HOTPLUG,
PERR_CPUSEMPTY,
+ PERR_RMTPARENT,
};
static const char * const perr_strings[] = {
@@ -108,6 +109,7 @@ static const char * const perr_strings[] = {
[PERR_NOCPUS] = "Parent unable to distribute cpu downstream",
[PERR_HOTPLUG] = "No cpu available due to hotplug",
[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
+ [PERR_RMTPARENT] = "New partition not allowed under remote partition",
};
struct cpuset {
@@ -206,6 +208,9 @@ struct cpuset {
/* Handle for cpuset.cpus.partition */
struct cgroup_file partition_file;
+
+ /* Remote partition silbling list anchored at remote_children */
+ struct list_head remote_sibling;
};
/*
@@ -236,6 +241,9 @@ static cpumask_var_t cs_reserve_cpus; /* Reserved CPUs */
static cpumask_var_t cs_free_reserve_cpus; /* Unallocated reserved CPUs */
static cpumask_var_t cs_tmp_cpus; /* Temp cpumask for partition */
+/* List of remote partition root children */
+static struct list_head remote_children;
+
/*
* Partition root states:
*
@@ -385,6 +393,8 @@ static struct cpuset top_cpuset = {
.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
(1 << CS_MEM_EXCLUSIVE)),
.partition_root_state = PRS_ROOT,
+ .remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
+
};
/**
@@ -1385,6 +1395,209 @@ static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
rebuild_sched_domains_locked();
}
+static inline bool is_remote_partition(struct cpuset *cs)
+{
+ return !list_empty(&cs->remote_sibling);
+}
+
+/*
+ * update_isolated_cpumasks_hier - Update effective cpumasks and tasks
+ * @cs: the cpuset to consider
+ * @lb: load balance flag
+ *
+ * This is called for descendant cpusets when a cpuset switches to or
+ * from an isolated remote partition. There can't be any remote partitions
+ * underneath it.
+ */
+static void update_isolated_cpumasks_hier(struct cpuset *cs, bool lb)
+{
+ struct cpuset *cp;
+ struct cgroup_subsys_state *pos_css;
+
+ rcu_read_lock();
+ cpuset_for_each_descendant_pre(cp, pos_css, cs) {
+ struct cpuset *parent = parent_cs(cp);
+
+ if (cp == cs)
+ continue; /* Skip partition root */
+
+ WARN_ON_ONCE(is_partition_valid(cp));
+ spin_lock_irq(&callback_lock);
+
+ if (cpumask_and(cp->effective_cpus, cp->cpus_allowed,
+ parent->effective_cpus)) {
+ if (cp->use_parent_ecpus) {
+ WARN_ON_ONCE(--parent->child_ecpus_count < 0);
+ cp->use_parent_ecpus = false;
+ }
+ } else {
+ cpumask_copy(cp->effective_cpus, parent->effective_cpus);
+ if (!cp->use_parent_ecpus) {
+ parent->child_ecpus_count++;
+ cp->use_parent_ecpus = true;
+ }
+ }
+ if (lb)
+ set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
+ else
+ clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
+
+ spin_unlock_irq(&callback_lock);
+ }
+ rcu_read_unlock();
+}
+
+/*
+ * isolated_cpus_acquire - Acquire isolated CPUs from cpuset.cpus.reserve
+ * @cs: the cpuset to update
+ * Return: 1 if successful, 0 if error
+ *
+ * Acquire isolated CPUs from cpuset.cpus.reserve and become an isolated
+ * partition root. cpuset_mutex must be held by the caller.
+ *
+ * Note that freely available reserve CPUs have already been isolated, so
+ * we don't need to rebuild sched domains. Since the cpuset is likely
+ * using effective_cpus from its parent before the conversion, we have to
+ * update parent's child_ecpus_count accordingly.
+ */
+static int isolated_cpus_acquire(struct cpuset *cs)
+{
+ struct cpuset *ancestor, *parent;
+
+ ancestor = parent = parent_cs(cs);
+
+ /*
+ * To enable acquiring of isolated CPUs from cpuset.cpus.reserve,
+ * cpus_allowed must be a subset of both its ancestor's cpus_allowed
+ * and cs_free_reserve_cpus and the user must have sysadmin privilege.
+ */
+ if (!capable(CAP_SYS_ADMIN) ||
+ !cpumask_subset(cs->cpus_allowed, cs_free_reserve_cpus))
+ return 0;
+
+ /*
+ * Check cpus_allowed of all its ancestors, except top_cpuset.
+ */
+ while (ancestor != &top_cpuset) {
+ if (!cpumask_subset(cs->cpus_allowed, ancestor->cpus_allowed))
+ return 0;
+ ancestor = parent_cs(ancestor);
+ }
+
+ spin_lock_irq(&callback_lock);
+ cpumask_andnot(cs_free_reserve_cpus,
+ cs_free_reserve_cpus, cs->cpus_allowed);
+ cpumask_and(cs->effective_cpus, cs->cpus_allowed, cpu_active_mask);
+
+ if (cs->use_parent_ecpus) {
+ cs->use_parent_ecpus = false;
+ parent->child_ecpus_count--;
+ }
+ list_add(&cs->remote_sibling, &remote_children);
+ clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
+ spin_unlock_irq(&callback_lock);
+
+ if (!list_empty(&cs->css.children))
+ update_isolated_cpumasks_hier(cs, false);
+
+ return 1;
+}
+
+/*
+ * isolated_cpus_release - Release isolated CPUs back to cpuset.cpus.reserve
+ * @cs: the cpuset to update
+ *
+ * Release isolated CPUs back to cpuset.cpus.reserve.
+ * cpuset_mutex must be held by the caller.
+ */
+static void isolated_cpus_release(struct cpuset *cs)
+{
+ struct cpuset *parent = parent_cs(cs);
+
+ if (!is_remote_partition(cs))
+ return;
+
+ /*
+ * This can be called when the cpu list in cs_reserve_cpus
+ * is reduced. So not all the cpus should be returned back to
+ * cs_free_reserve_cpus.
+ */
+ WARN_ON_ONCE(cs->partition_root_state != PRS_ISOLATED);
+ WARN_ON_ONCE(!cpumask_subset(cs->cpus_allowed, cs_reserve_cpus));
+ spin_lock_irq(&callback_lock);
+ if (!cpumask_and(cs->effective_cpus,
+ parent->effective_cpus, cs->cpus_allowed)) {
+ cs->use_parent_ecpus = true;
+ parent->child_ecpus_count++;
+ cpumask_copy(cs->effective_cpus, parent->effective_cpus);
+ }
+ list_del_init(&cs->remote_sibling);
+ cs->partition_root_state = PRS_INVALID_ISOLATED;
+ if (!cs->prs_err)
+ cs->prs_err = PERR_INVCPUS;
+
+ /* Add the CPUs back to cs_free_reserve_cpus */
+ cpumask_or(cs_free_reserve_cpus,
+ cs_free_reserve_cpus, cs->cpus_allowed);
+
+ /*
+ * There is no change in the CPU load balance state that requires
+ * rebuilding sched domains. So the flags bits can be set directly.
+ */
+ set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
+ clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
+ spin_unlock_irq(&callback_lock);
+
+ if (!list_empty(&cs->css.children))
+ update_isolated_cpumasks_hier(cs, true);
+}
+
+/*
+ * isolated_cpus_update - cpuset.cpus change in a remote isolated partition
+ *
+ * Return: 1 if successful, 0 if it needs to become invalid.
+ */
+static int isolated_cpus_update(struct cpuset *cs, struct cpumask *newmask,
+ struct tmpmasks *tmp)
+{
+ bool adding, deleting;
+
+ if (WARN_ON_ONCE((cs->partition_root_state != PRS_ISOLATED) ||
+ !is_remote_partition(cs)))
+ return 0;
+
+ if (cpumask_empty(newmask))
+ goto invalidate;
+
+ adding = cpumask_andnot(tmp->addmask, newmask, cs->cpus_allowed);
+ deleting = cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask);
+
+ /*
+ * Additions of isolation CPUs is only allowed if those CPUs are
+ * in cs_free_reserve_cpus and the caller has sysadmin privilege.
+ */
+ if (adding && (!capable(CAP_SYS_ADMIN) ||
+ !cpumask_subset(tmp->addmask, cs_free_reserve_cpus)))
+ goto invalidate;
+
+ spin_lock_irq(&callback_lock);
+ if (adding)
+ cpumask_andnot(cs_free_reserve_cpus,
+ cs_free_reserve_cpus, tmp->addmask);
+ if (deleting)
+ cpumask_or(cs_free_reserve_cpus,
+ cs_free_reserve_cpus, tmp->delmask);
+ cpumask_copy(cs->cpus_allowed, newmask);
+ cpumask_andnot(cs->effective_cpus, newmask, cs->subparts_cpus);
+ cpumask_and(cs->effective_cpus, cs->effective_cpus, cpu_active_mask);
+ spin_unlock_irq(&callback_lock);
+ return 1;
+
+invalidate:
+ isolated_cpus_release(cs);
+ return 0;
+}
+
/**
* update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
* @cs: The cpuset that requests change in partition root state
@@ -1457,9 +1670,12 @@ static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
if (cmd == partcmd_enable) {
/*
* Enabling partition root is not allowed if cpus_allowed
- * doesn't overlap parent's cpus_allowed.
+ * doesn't overlap parent's cpus_allowed or if it intersects
+ * cs_free_reserve_cpus since it needs to be a remote partition
+ * in this case.
*/
- if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed))
+ if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed) ||
+ cpumask_intersects(cs->cpus_allowed, cs_free_reserve_cpus))
return PERR_INVCPUS;
/*
@@ -1694,6 +1910,15 @@ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
struct cpuset *parent = parent_cs(cp);
bool update_parent = false;
+ /*
+ * Skip remote partition that acquires isolated CPUs directly
+ * from cs_reserve_cpus.
+ */
+ if (is_remote_partition(cp)) {
+ pos_css = css_rightmost_descendant(pos_css);
+ continue;
+ }
+
compute_effective_cpumask(tmp->new_cpus, cp, parent);
/*
@@ -1804,7 +2029,7 @@ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
WARN_ON(!is_in_v2_mode() &&
!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
- update_tasks_cpumask(cp, tmp->new_cpus);
+ update_tasks_cpumask(cp, cp->effective_cpus);
/*
* On legacy hierarchy, if the effective cpumask of any non-
@@ -1946,6 +2171,14 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
return retval;
if (cs->partition_root_state) {
+ /*
+ * Call isolated_cpus_update() to handle valid remote partition
+ */
+ if (is_remote_partition(cs)) {
+ isolated_cpus_update(cs, cs_tmp_cpus, &tmp);
+ goto update_hier;
+ }
+
if (invalidate)
update_parent_subparts_cpumask(cs, partcmd_invalidate,
NULL, &tmp);
@@ -1980,10 +2213,11 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
}
spin_unlock_irq(&callback_lock);
+update_hier:
/* effective_cpus will be updated here */
update_cpumasks_hier(cs, &tmp, false);
- if (cs->partition_root_state) {
+ if (cs->partition_root_state && !is_remote_partition(cs)) {
struct cpuset *parent = parent_cs(cs);
/*
@@ -2072,7 +2306,13 @@ static int update_reserve_cpumask(struct cpuset *trialcs, const char *buf)
* Invalidate remote partitions if necessary
*/
if (deleting) {
- /* TODO */
+ struct cpuset *child, *next;
+
+ list_for_each_entry_safe(child, next, &remote_children,
+ remote_sibling) {
+ if (cpumask_intersects(child->cpus_allowed, tmp.delmask))
+ isolated_cpus_release(child);
+ }
}
/*
@@ -2539,21 +2779,32 @@ static int update_prstate(struct cpuset *cs, int new_prs)
return 0;
/*
- * For a previously invalid partition root, leave it at being
- * invalid if new_prs is not "member".
+ * For a previously invalid partition root, treat it like a "member".
*/
- if (new_prs && is_prs_invalid(old_prs)) {
- cs->partition_root_state = -new_prs;
- return 0;
- }
+ if (new_prs && is_prs_invalid(old_prs))
+ old_prs = PRS_MEMBER;
if (alloc_cpumasks(NULL, &tmpmask))
return -ENOMEM;
+ if ((old_prs == PRS_ISOLATED) && is_remote_partition(cs)) {
+ /* Pre-invalidate a remote isolated partition */
+ isolated_cpus_release(cs);
+ old_prs = PRS_MEMBER;
+ }
+
err = update_partition_exclusive(cs, new_prs);
if (err)
goto out;
+ /*
+ * New partition is not allowed under a remote partition
+ */
+ if (new_prs && is_remote_partition(parent)) {
+ err = PERR_RMTPARENT;
+ goto out;
+ }
+
if (!old_prs) {
/*
* cpus_allowed cannot be empty.
@@ -2565,6 +2816,12 @@ static int update_prstate(struct cpuset *cs, int new_prs)
err = update_parent_subparts_cpumask(cs, partcmd_enable,
NULL, &tmpmask);
+ /*
+ * If an attempt to become adjacent isolated partition fails,
+ * try to become a remote isolated partition instead.
+ */
+ if (err && (new_prs == PRS_ISOLATED) && isolated_cpus_acquire(cs))
+ err = 0; /* Become remote isolated partition */
} else if (old_prs && new_prs) {
/*
* A change in load balance state only, no change in cpumasks.
@@ -3462,6 +3719,7 @@ cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
nodes_clear(cs->effective_mems);
fmeter_init(&cs->fmeter);
cs->relax_domain_level = -1;
+ INIT_LIST_HEAD(&cs->remote_sibling);
/* Set CS_MEMORY_MIGRATE for default hierarchy */
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
@@ -3497,6 +3755,11 @@ static int cpuset_css_online(struct cgroup_subsys_state *css)
cs->effective_mems = parent->effective_mems;
cs->use_parent_ecpus = true;
parent->child_ecpus_count++;
+ /*
+ * Clear CS_SCHED_LOAD_BALANCE if parent is isolated
+ */
+ if (!is_sched_load_balance(parent))
+ clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}
spin_unlock_irq(&callback_lock);
@@ -3741,6 +4004,7 @@ int __init cpuset_init(void)
fmeter_init(&top_cpuset.fmeter);
set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
top_cpuset.relax_domain_level = -1;
+ INIT_LIST_HEAD(&remote_children);
BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
@@ -3873,9 +4137,20 @@ static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
}
parent = parent_cs(cs);
- compute_effective_cpumask(&new_cpus, cs, parent);
nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
+ /*
+ * In the special case of a valid remote isolated partition.
+ * We just need to mask offline cpus from cpus_allowed unless
+ * all the isolated cpus are gone.
+ */
+ if (is_remote_partition(cs)) {
+ if (!cpumask_and(&new_cpus, cs->cpus_allowed, cpu_active_mask))
+ isolated_cpus_release(cs);
+ } else {
+ compute_effective_cpumask(&new_cpus, cs, parent);
+ }
+
if (cs->nr_subparts_cpus)
/*
* Make sure that CPUs allocated to child partitions
@@ -3906,10 +4181,11 @@ static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
* the following conditions hold:
* 1) empty effective cpus but not valid empty partition.
* 2) parent is invalid or doesn't grant any cpus to child
- * partitions.
+ * partitions and not a remote partition.
*/
- if (is_partition_valid(cs) && (!parent->nr_subparts_cpus ||
- (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
+ if (is_partition_valid(cs) &&
+ ((!parent->nr_subparts_cpus && !is_remote_partition(cs)) ||
+ (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
int old_prs, parent_prs;
update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp);
--
2.31.1
A cpuset partition is a collection of cpusets with a partition root
and its descendants from that root downward excluding any cpusets that
are part of other partitions. A partition has exclusive access to a set
of CPUs granted to it. Other cpusets outside of a partition cannot use
any CPUs in that set.
Currently, creation of partitions requires a hierarchical CPUs
distribution model where the parent of a partition root has to be
a partition root itself. Hence all the partition roots have to be
clustered around the cgroup root.
To enable the creation of a remote partition down in the hierarchy
without a parental partition root, we need a way to reserve the CPUs
that will be used in a remote partition. Introduce a new root-only
"cpuset.cpus.reserve" control file in the top cpuset for this particular
purpose.
By default, the new "cpuset.cpus.reserve" control file will track
the subparts_cpus cpumask in the top cpuset. By writing into this new
control file, however, we can reserve additional CPUs that can be used
in a remote partition. Any CPUs that are in "cpuset.cpus.reserve" will
have to be removed from the effective_cpus of all the cpusets that are
not part of that valid partitions.
The prefix "+" and "-" can be used to indicate the addition to or the
subtraction from the existing CPUs in "cpuset.cpus.reserve". A single
"-" character indicate the deletion of all the free reserve CPUs not
allocated to any existing partition.
Signed-off-by: Waiman Long <longman(a)redhat.com>
---
kernel/cgroup/cpuset.c | 253 ++++++++++++++++++++++++++++++++++++++---
1 file changed, 239 insertions(+), 14 deletions(-)
diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
index 8604c919e1e4..69abe95a9969 100644
--- a/kernel/cgroup/cpuset.c
+++ b/kernel/cgroup/cpuset.c
@@ -208,7 +208,33 @@ struct cpuset {
struct cgroup_file partition_file;
};
-static cpumask_var_t cs_tmp_cpus; /* Temp cpumask for partition */
+/*
+ * Reserved CPUs for partitions.
+ *
+ * By default, CPUs used in partitions are tracked in the parent's
+ * subparts_cpus mask following a hierarchical CPUs distribution model.
+ * To enable the creation of a remote partition down in the hierarchy
+ * without a parental partition root, one can write directly to
+ * cpuset.cpus.reserve in the root cgroup to allocate more CPUs that can
+ * be used by remote partitions. Removal of existing reserved CPUs may
+ * also cause some existing partitions to become invalid.
+ *
+ * All the cpumasks below should only be used with cpuset_mutex held.
+ * Modification of cs_reserve_cpus & cs_free_reserve_cpus also requires
+ * holding the callback_lock.
+ *
+ * Relationship among cs_reserve_cpus, cs_free_reserve_cpus and
+ * top_cpuset.subparts_cpus are:
+ *
+ * top_cpuset.subparts_cpus ⊆ cs_reserve_cpus
+ * cs_free_reserve_cpus ⊆ cs_reserve_cpus
+ * top_cpuset.subparts_cpus ∩ cs_free_reserve_cpus = ∅
+ * cs_reserve_cpus - cs_free_reserve_cpus - top_cpuset.subparts_cpus
+ * = CPUs dedicated to remote partitions
+ */
+static cpumask_var_t cs_reserve_cpus; /* Reserved CPUs */
+static cpumask_var_t cs_free_reserve_cpus; /* Unallocated reserved CPUs */
+static cpumask_var_t cs_tmp_cpus; /* Temp cpumask for partition */
/*
* Partition root states:
@@ -1202,13 +1228,13 @@ static void rebuild_sched_domains_locked(void)
* should be the same as the active CPUs, so checking only top_cpuset
* is enough to detect racing CPU offlines.
*/
- if (!top_cpuset.nr_subparts_cpus &&
+ if (cpumask_empty(cs_reserve_cpus) &&
!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
return;
/*
* With subpartition CPUs, however, the effective CPUs of a partition
- * root should be only a subset of the active CPUs. Since a CPU in any
+ * root should only be a subset of the active CPUs. Since a CPU in any
* partition root could be offlined, all must be checked.
*/
if (top_cpuset.nr_subparts_cpus) {
@@ -1275,7 +1301,7 @@ static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
*/
if ((task->flags & PF_KTHREAD) && kthread_is_per_cpu(task))
continue;
- cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus);
+ cpumask_andnot(new_cpus, possible_mask, cs_reserve_cpus);
} else {
cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
}
@@ -1406,6 +1432,7 @@ static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
int old_prs, new_prs;
int part_error = PERR_NONE; /* Partition error? */
+ bool update_reserve = (parent == &top_cpuset);
lockdep_assert_held(&cpuset_mutex);
@@ -1576,7 +1603,7 @@ static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
}
/*
- * Change the parent's subparts_cpus.
+ * Change the parent's subparts_cpus and maybe cs_reserve_cpus.
* Newly added CPUs will be removed from effective_cpus and
* newly deleted ones will be added back to effective_cpus.
*/
@@ -1586,10 +1613,25 @@ static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
parent->subparts_cpus, tmp->addmask);
cpumask_andnot(parent->effective_cpus,
parent->effective_cpus, tmp->addmask);
+ if (update_reserve) {
+ cpumask_or(cs_reserve_cpus,
+ cs_reserve_cpus, tmp->addmask);
+ cpumask_andnot(cs_free_reserve_cpus,
+ cs_free_reserve_cpus, tmp->addmask);
+ }
}
if (deleting) {
cpumask_andnot(parent->subparts_cpus,
parent->subparts_cpus, tmp->delmask);
+ /*
+ * The automatic cpu reservation of adjacent partition
+ * won't add back the deleted CPUs to cs_free_reserve_cpus.
+ * Instead, they are returned back to effective_cpus of top
+ * cpuset.
+ */
+ if (update_reserve)
+ cpumask_andnot(cs_reserve_cpus,
+ cs_reserve_cpus, tmp->delmask);
/*
* Some of the CPUs in subparts_cpus might have been offlined.
*/
@@ -1783,6 +1825,8 @@ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
if (need_rebuild_sched_domains)
rebuild_sched_domains_locked();
+
+ return;
}
/**
@@ -1955,6 +1999,167 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
return 0;
}
+/**
+ * update_reserve_cpumask - update cs_reserve_cpus
+ * @trialcs: trial cpuset
+ * @buf: buffer of cpu numbers written to this cpuset
+ * Return: 0 if successful, < 0 if error
+ */
+static int update_reserve_cpumask(struct cpuset *trialcs, const char *buf)
+{
+ struct cgroup_subsys_state *css;
+ struct cpuset *cs;
+ bool adding, deleting;
+ struct tmpmasks tmp;
+
+ adding = deleting = false;
+ if (*buf == '+') {
+ adding = true;
+ buf++;
+ } else if (*buf == '-') {
+ deleting = true;
+ buf++;
+ }
+
+ if (!*buf) {
+ if (adding)
+ return -EINVAL;
+
+ if (deleting) {
+ if (cpumask_empty(cs_free_reserve_cpus))
+ return 0;
+ cpumask_copy(trialcs->cpus_allowed, cs_free_reserve_cpus);
+ } else {
+ cpumask_clear(trialcs->cpus_allowed);
+ }
+ } else {
+ int retval = cpulist_parse(buf, trialcs->cpus_allowed);
+
+ if (retval < 0)
+ return retval;
+ }
+
+ if (!adding && !deleting &&
+ cpumask_equal(trialcs->cpus_allowed, cs_reserve_cpus))
+ return 0;
+
+ /* Preserve trialcs->cpus_allowed for now */
+ init_tmpmasks(&tmp, NULL, trialcs->subparts_cpus,
+ trialcs->effective_cpus);
+
+ /*
+ * Compute the addition and removal of CPUs to/from cs_reserve_cpus
+ */
+ if (!adding && !deleting) {
+ adding = cpumask_andnot(tmp.addmask, trialcs->cpus_allowed,
+ cs_reserve_cpus);
+ deleting = cpumask_andnot(tmp.delmask, cs_reserve_cpus,
+ trialcs->cpus_allowed);
+ } else if (adding) {
+ adding = cpumask_andnot(tmp.addmask,
+ trialcs->cpus_allowed, cs_reserve_cpus);
+ cpumask_or(trialcs->cpus_allowed, cs_reserve_cpus, tmp.addmask);
+ } else { /* deleting */
+ deleting = cpumask_and(tmp.delmask,
+ trialcs->cpus_allowed, cs_reserve_cpus);
+ cpumask_andnot(trialcs->cpus_allowed, cs_reserve_cpus, tmp.delmask);
+ }
+
+ if (!adding && !deleting)
+ return 0;
+
+ /*
+ * Invalidate remote partitions if necessary
+ */
+ if (deleting) {
+ /* TODO */
+ }
+
+ /*
+ * Cannot use up all the CPUs in top_cpuset.effective_cpus
+ */
+ if (!deleting && adding &&
+ cpumask_subset(top_cpuset.effective_cpus, tmp.addmask))
+ return -EINVAL;
+
+ spin_lock_irq(&callback_lock);
+ /*
+ * Update top_cpuset.effective_cpus, cs_reserve_cpus &
+ * cs_free_reserve_cpus.
+ */
+ if (adding)
+ cpumask_or(cs_free_reserve_cpus, cs_free_reserve_cpus,
+ tmp.addmask);
+ cpumask_copy(cs_reserve_cpus, trialcs->cpus_allowed);
+ cpumask_andnot(top_cpuset.effective_cpus,
+ cpu_active_mask, cs_reserve_cpus);
+
+ /*
+ * Remove CPUs from cs_free_reserve_cpus first. Anything left
+ * means some partitions has to be made invalid.
+ */
+ if (deleting & cpumask_and(cs_tmp_cpus, cs_free_reserve_cpus,
+ tmp.delmask)) {
+ cpumask_andnot(cs_free_reserve_cpus, cs_free_reserve_cpus,
+ cs_tmp_cpus);
+ deleting = cpumask_andnot(tmp.delmask, tmp.delmask,
+ cs_tmp_cpus);
+ }
+ spin_unlock_irq(&callback_lock);
+
+ /*
+ * Invalidate some adjacent partitions under top cpuset, if necessary
+ */
+ if (deleting && cpumask_and(cs_tmp_cpus, tmp.delmask,
+ top_cpuset.subparts_cpus)) {
+ struct cgroup_subsys_state *css;
+ struct cpuset *cp;
+
+ /*
+ * Temporarily save the remaining CPUs to be deleted in
+ * trialcs->cpus_allowed to be restored back to tmp.delmask
+ * later.
+ */
+ deleting = cpumask_andnot(trialcs->cpus_allowed, tmp.delmask,
+ cs_tmp_cpus);
+ rcu_read_lock();
+ cpuset_for_each_child(cp, css, &top_cpuset)
+ if (is_partition_valid(cp) &&
+ cpumask_intersects(cs_tmp_cpus, cp->cpus_allowed)) {
+ rcu_read_unlock();
+ update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp);
+ rcu_read_lock();
+ }
+ rcu_read_unlock();
+ if (deleting)
+ cpumask_copy(tmp.delmask, trialcs->cpus_allowed);
+ }
+
+ /* Can now use all of trialcs */
+ init_tmpmasks(&tmp, trialcs->cpus_allowed, trialcs->subparts_cpus,
+ trialcs->effective_cpus);
+
+ /*
+ * Update effective_cpus of all descendants that are not in
+ * partitions and rebuild sched domaiins.
+ */
+ rcu_read_lock();
+ cpuset_for_each_child(cs, css, &top_cpuset) {
+ compute_effective_cpumask(tmp.new_cpus, cs, &top_cpuset);
+ if (cpumask_equal(tmp.new_cpus, cs->effective_cpus))
+ continue;
+ if (!css_tryget_online(&cs->css))
+ continue;
+ rcu_read_unlock();
+ update_cpumasks_hier(cs, &tmp, false);
+ rcu_read_lock();
+ css_put(&cs->css);
+ }
+ rcu_read_unlock();
+ rebuild_sched_domains_locked();
+ return 0;
+}
+
/*
* Migrate memory region from one set of nodes to another. This is
* performed asynchronously as it can be called from process migration path
@@ -2743,6 +2948,7 @@ typedef enum {
FILE_EFFECTIVE_CPULIST,
FILE_EFFECTIVE_MEMLIST,
FILE_SUBPARTS_CPULIST,
+ FILE_RESERVE_CPULIST,
FILE_CPU_EXCLUSIVE,
FILE_MEM_EXCLUSIVE,
FILE_MEM_HARDWALL,
@@ -2880,6 +3086,9 @@ static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
case FILE_CPULIST:
retval = update_cpumask(cs, trialcs, buf);
break;
+ case FILE_RESERVE_CPULIST:
+ retval = update_reserve_cpumask(trialcs, buf);
+ break;
case FILE_MEMLIST:
retval = update_nodemask(cs, trialcs, buf);
break;
@@ -2927,6 +3136,9 @@ static int cpuset_common_seq_show(struct seq_file *sf, void *v)
case FILE_EFFECTIVE_MEMLIST:
seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
break;
+ case FILE_RESERVE_CPULIST:
+ seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs_reserve_cpus));
+ break;
case FILE_SUBPARTS_CPULIST:
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
break;
@@ -3200,6 +3412,14 @@ static struct cftype dfl_files[] = {
.file_offset = offsetof(struct cpuset, partition_file),
},
+ {
+ .name = "cpus.reserve",
+ .seq_show = cpuset_common_seq_show,
+ .write = cpuset_write_resmask,
+ .private = FILE_RESERVE_CPULIST,
+ .flags = CFTYPE_ONLY_ON_ROOT,
+ },
+
{
.name = "cpus.subpartitions",
.seq_show = cpuset_common_seq_show,
@@ -3510,6 +3730,8 @@ int __init cpuset_init(void)
BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
BUG_ON(!zalloc_cpumask_var(&cs_tmp_cpus, GFP_KERNEL));
+ BUG_ON(!zalloc_cpumask_var(&cs_reserve_cpus, GFP_KERNEL));
+ BUG_ON(!zalloc_cpumask_var(&cs_free_reserve_cpus, GFP_KERNEL));
cpumask_setall(top_cpuset.cpus_allowed);
nodes_setall(top_cpuset.mems_allowed);
@@ -3788,10 +4010,10 @@ static void cpuset_hotplug_workfn(struct work_struct *work)
mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
/*
- * In the rare case that hotplug removes all the cpus in subparts_cpus,
+ * In the rare case that hotplug removes all the reserve cpus,
* we assumed that cpus are updated.
*/
- if (!cpus_updated && top_cpuset.nr_subparts_cpus)
+ if (!cpus_updated && !cpumask_empty(cs_reserve_cpus))
cpus_updated = true;
/* synchronize cpus_allowed to cpu_active_mask */
@@ -3801,18 +4023,21 @@ static void cpuset_hotplug_workfn(struct work_struct *work)
cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
/*
* Make sure that CPUs allocated to child partitions
- * do not show up in effective_cpus. If no CPU is left,
- * we clear the subparts_cpus & let the child partitions
- * fight for the CPUs again.
+ * do not show up in top_cpuset's effective_cpus. In the
+ * unlikely event tht no effective CPU is left in top_cpuset,
+ * we clear all the reserve cpus and let the non-remote child
+ * partitions fight for the CPUs again.
*/
- if (top_cpuset.nr_subparts_cpus) {
- if (cpumask_subset(&new_cpus,
- top_cpuset.subparts_cpus)) {
+ if (!cpumask_empty(cs_reserve_cpus)) {
+
+ if (cpumask_subset(&new_cpus, cs_reserve_cpus)) {
top_cpuset.nr_subparts_cpus = 0;
cpumask_clear(top_cpuset.subparts_cpus);
+ cpumask_clear(cs_free_reserve_cpus);
+ cpumask_clear(cs_reserve_cpus);
} else {
cpumask_andnot(&new_cpus, &new_cpus,
- top_cpuset.subparts_cpus);
+ cs_reserve_cpus);
}
}
cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
--
2.31.1