Add documentation on using coresight during panic and watchdog.
Signed-off-by: Linu Cherian lcherian@marvell.com --- Changelog from v9: This patch has been newly introduced.
Documentation/trace/coresight/panic.rst | 356 ++++++++++++++++++++++++ 1 file changed, 356 insertions(+) create mode 100644 Documentation/trace/coresight/panic.rst
diff --git a/Documentation/trace/coresight/panic.rst b/Documentation/trace/coresight/panic.rst new file mode 100644 index 000000000000..3b53d91cace8 --- /dev/null +++ b/Documentation/trace/coresight/panic.rst @@ -0,0 +1,356 @@ +=================================================== +Using Coresight for Kernel panic and Watchdog reset +=================================================== + +Introduction +------------ +This documentation is about using Linux coresight trace support to +debug kernel panic and watchdog reset scenarios. + +Coresight trace during Kernel panic +----------------------------------- +From the coresight driver point of view, addressing the kernel panic +situation has four main requirements. + +a. Support for allocation of trace buffer pages from reserved memory area. + Platform can advertise this using a new device tree property added to + relevant coresight nodes. + +b. Support for stopping coresight blocks at the time of panic + +c. Saving required metadata in the specified format + +d. Support for reading trace data captured at the time of panic + +Allocation of trace buffer pages from reserved RAM +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +A new optional device tree property "memory-region" is added to the +ETR/ETF device nodes, that would give the base address and size of trace +buffer. + +Static allocation of trace buffers would ensure that both IOMMU enabled +and disabled cases are handled. Also, platforms that support persistent +RAM will allow users to read trace data in the subsequent boot without +booting the crashdump kernel. + +Note: +For ETR sink devices, this reserved region will be used for both trace +capture and trace data retrieval. +For ETF sink devices, internal SRAM would be used for trace capture, +and they would be synced to reserved region for retrieval. + + +Disabling coresight blocks at the time of panic +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +In order to avoid the situation of losing relevant trace data after a +kernel panic, it would be desirable to stop the coresight blocks at the +time of panic. + +This can be achieved by configuring the comparator, CTI and sink +devices as below:: + + Trigger on panic + Comparator --->External out --->CTI -->External In---->ETR/ETF stop + +Saving metadata at the time of kernel panic +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Coresight metadata involves all additional data that are required for a +successful trace decode in addition to the trace data. This involves +ETR/ETF, ETE register snapshot etc. + +A new optional device property "memory-region" is added to +the ETR/ETF/ETE device nodes for this. + +Reading trace data captured at the time of panic +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Trace data captured at the time of panic, can be read from rebooted kernel +or from crashdump kernel using a special device file /dev/crash_tmc_xxx. +This device file is created only when there is a valid crashdata available. + +General flow of trace capture and decode incase of kernel panic +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +1. Enable source and sink on all the cores using the sysfs interface. + ETR sinks should have trace buffers allocated from reserved memory, + by selecting "resrv" buffer mode from sysfs. + +2. Run relevant tests. + +3. On a kernel panic, all coresight blocks are disabled, necessary + metadata is synced by kernel panic handler. + + System would eventually reboot or boot a crashdump kernel. + +4. For platforms that supports crashdump kernel, raw trace data can be + dumped using the coresight sysfs interface from the crashdump kernel + itself. Persistent RAM is not a requirement in this case. + +5. For platforms that supports persistent RAM, trace data can be dumped + using the coresight sysfs interface in the subsequent Linux boot. + Crashdump kernel is not a requirement in this case. Persistent RAM + ensures that trace data is intact across reboot. + +Coresight trace during Watchdog reset +------------------------------------- +The main difference between addressing the watchdog reset and kernel panic +case are below, + +a. Saving coresight metadata need to be taken care by the + SCP(system control processor) firmware in the specified format, + instead of kernel. + +b. Reserved memory region given by firmware for trace buffer and metadata + has to be in persistent RAM. + Note: This is a requirement for watchdog reset case but optional + in kernel panic case. + +Watchdog reset can be supported only on platforms that meet the above +two requirements. + +Sample commands for testing a Kernel panic case with ETR sink +------------------------------------------------------------- + +1. Boot Linux kernel with "crash_kexec_post_notifiers" added to the kernel + bootargs. This is mandatory if the user would like to read the tracedata + from the crashdump kernel. + +2. Enable the preloaded ETM configuration + + #echo 1 > /sys/kernel/config/cs-syscfg/configurations/panicstop/enable + +3. Configure CTI using sysfs interface:: + + #./cti_setup.sh + + #cat cti_setup.sh + + + cd /sys/bus/coresight/devices/ + + ap_cti_config () { + #ETM trig out[0] trigger to Channel 0 + echo 0 4 > channels/trigin_attach + } + + etf_cti_config () { + #ETF Flush in trigger from Channel 0 + echo 0 1 > channels/trigout_attach + echo 1 > channels/trig_filter_enable + } + + etr_cti_config () { + #ETR Flush in from Channel 0 + echo 0 1 > channels/trigout_attach + echo 1 > channels/trig_filter_enable + } + + ctidevs=`find . -name "cti*"` + + for i in $ctidevs + do + cd $i + + connection=`find . -name "ete*"` + if [ ! -z "$connection" ] + then + echo "AP CTI config for $i" + ap_cti_config + fi + + connection=`find . -name "tmc_etf*"` + if [ ! -z "$connection" ] + then + echo "ETF CTI config for $i" + etf_cti_config + fi + + connection=`find . -name "tmc_etr*"` + if [ ! -z "$connection" ] + then + echo "ETR CTI config for $i" + etr_cti_config + fi + + cd .. + done + +Note: CTI connections are SOC specific and hence the above script is +added just for reference. + +4. Choose reserved buffer mode for ETR buffer + #echo "resrv" > /sys/bus/coresight/devices/tmc_etr0/buf_mode_preferred + +5. Enable stop on flush trigger configuration + #echo 1 > /sys/bus/coresight/devices/tmc_etr0/stop_on_flush + +6. Start Coresight tracing on cores 1 and 2 using sysfs interface + +7. Run some application on core 1 + #taskset -c 1 dd if=/dev/urandom of=/dev/null & + +8. Invoke kernel panic on core 2 + #echo 1 > /proc/sys/kernel/panic + #taskset -c 2 echo c > /proc/sysrq-trigger + +9. From rebooted kernel or crashdump kernel, read crashdata + + #dd if=/dev/crash_tmc_etr0 of=/trace/cstrace.bin + +10. Run opencsd decoder tools/scripts to generate the instruction trace. + +Sample instruction trace dump +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Core1 dump:: + + A etm4_enable_hw: ffff800008ae1dd4 + CONTEXT EL2 etm4_enable_hw: ffff800008ae1dd4 + I etm4_enable_hw: ffff800008ae1dd4: + d503201f nop + I etm4_enable_hw: ffff800008ae1dd8: + d503201f nop + I etm4_enable_hw: ffff800008ae1ddc: + d503201f nop + I etm4_enable_hw: ffff800008ae1de0: + d503201f nop + I etm4_enable_hw: ffff800008ae1de4: + d503201f nop + I etm4_enable_hw: ffff800008ae1de8: + d503233f paciasp + I etm4_enable_hw: ffff800008ae1dec: + a9be7bfd stp x29, x30, [sp, #-32]! + I etm4_enable_hw: ffff800008ae1df0: + 910003fd mov x29, sp + I etm4_enable_hw: ffff800008ae1df4: + a90153f3 stp x19, x20, [sp, #16] + I etm4_enable_hw: ffff800008ae1df8: + 2a0003f4 mov w20, w0 + I etm4_enable_hw: ffff800008ae1dfc: + 900085b3 adrp x19, ffff800009b95000 <reserved_mem+0xc48> + I etm4_enable_hw: ffff800008ae1e00: + 910f4273 add x19, x19, #0x3d0 + I etm4_enable_hw: ffff800008ae1e04: + f8747a60 ldr x0, [x19, x20, lsl #3] + E etm4_enable_hw: ffff800008ae1e08: + b4000140 cbz x0, ffff800008ae1e30 <etm4_starting_cpu+0x50> + I 149.039572921 etm4_enable_hw: ffff800008ae1e30: + a94153f3 ldp x19, x20, [sp, #16] + I 149.039572921 etm4_enable_hw: ffff800008ae1e34: + 52800000 mov w0, #0x0 // #0 + I 149.039572921 etm4_enable_hw: ffff800008ae1e38: + a8c27bfd ldp x29, x30, [sp], #32 + + ..snip + + 149.052324811 chacha_block_generic: ffff800008642d80: + 9100a3e0 add x0, + I 149.052324811 chacha_block_generic: ffff800008642d84: + b86178a2 ldr w2, [x5, x1, lsl #2] + I 149.052324811 chacha_block_generic: ffff800008642d88: + 8b010803 add x3, x0, x1, lsl #2 + I 149.052324811 chacha_block_generic: ffff800008642d8c: + b85fc063 ldur w3, [x3, #-4] + I 149.052324811 chacha_block_generic: ffff800008642d90: + 0b030042 add w2, w2, w3 + I 149.052324811 chacha_block_generic: ffff800008642d94: + b8217882 str w2, [x4, x1, lsl #2] + I 149.052324811 chacha_block_generic: ffff800008642d98: + 91000421 add x1, x1, #0x1 + I 149.052324811 chacha_block_generic: ffff800008642d9c: + f100443f cmp x1, #0x11 + + +Core 2 dump:: + + A etm4_enable_hw: ffff800008ae1dd4 + CONTEXT EL2 etm4_enable_hw: ffff800008ae1dd4 + I etm4_enable_hw: ffff800008ae1dd4: + d503201f nop + I etm4_enable_hw: ffff800008ae1dd8: + d503201f nop + I etm4_enable_hw: ffff800008ae1ddc: + d503201f nop + I etm4_enable_hw: ffff800008ae1de0: + d503201f nop + I etm4_enable_hw: ffff800008ae1de4: + d503201f nop + I etm4_enable_hw: ffff800008ae1de8: + d503233f paciasp + I etm4_enable_hw: ffff800008ae1dec: + a9be7bfd stp x29, x30, [sp, #-32]! + I etm4_enable_hw: ffff800008ae1df0: + 910003fd mov x29, sp + I etm4_enable_hw: ffff800008ae1df4: + a90153f3 stp x19, x20, [sp, #16] + I etm4_enable_hw: ffff800008ae1df8: + 2a0003f4 mov w20, w0 + I etm4_enable_hw: ffff800008ae1dfc: + 900085b3 adrp x19, ffff800009b95000 <reserved_mem+0xc48> + I etm4_enable_hw: ffff800008ae1e00: + 910f4273 add x19, x19, #0x3d0 + I etm4_enable_hw: ffff800008ae1e04: + f8747a60 ldr x0, [x19, x20, lsl #3] + E etm4_enable_hw: ffff800008ae1e08: + b4000140 cbz x0, ffff800008ae1e30 <etm4_starting_cpu+0x50> + I 149.046243445 etm4_enable_hw: ffff800008ae1e30: + a94153f3 ldp x19, x20, [sp, #16] + I 149.046243445 etm4_enable_hw: ffff800008ae1e34: + 52800000 mov w0, #0x0 // #0 + I 149.046243445 etm4_enable_hw: ffff800008ae1e38: + a8c27bfd ldp x29, x30, [sp], #32 + I 149.046243445 etm4_enable_hw: ffff800008ae1e3c: + d50323bf autiasp + E 149.046243445 etm4_enable_hw: ffff800008ae1e40: + d65f03c0 ret + A ete_sysreg_write: ffff800008adfa18 + + ..snip + + I 149.05422547 panic: ffff800008096300: + a90363f7 stp x23, x24, [sp, #48] + I 149.05422547 panic: ffff800008096304: + 6b00003f cmp w1, w0 + I 149.05422547 panic: ffff800008096308: + 3a411804 ccmn w0, #0x1, #0x4, ne // ne = any + N 149.05422547 panic: ffff80000809630c: + 540001e0 b.eq ffff800008096348 <panic+0xe0> // b.none + I 149.05422547 panic: ffff800008096310: + f90023f9 str x25, [sp, #64] + E 149.05422547 panic: ffff800008096314: + 97fe44ef bl ffff8000080276d0 <panic_smp_self_stop> + A panic: ffff80000809634c + I 149.05422547 panic: ffff80000809634c: + 910102d5 add x21, x22, #0x40 + I 149.05422547 panic: ffff800008096350: + 52800020 mov w0, #0x1 // #1 + E 149.05422547 panic: ffff800008096354: + 94166b8b bl ffff800008631180 <bust_spinlocks> + N 149.054225518 bust_spinlocks: ffff800008631180: + 340000c0 cbz w0, ffff800008631198 <bust_spinlocks+0x18> + I 149.054225518 bust_spinlocks: ffff800008631184: + f000a321 adrp x1, ffff800009a98000 <pbufs.0+0xbb8> + I 149.054225518 bust_spinlocks: ffff800008631188: + b9405c20 ldr w0, [x1, #92] + I 149.054225518 bust_spinlocks: ffff80000863118c: + 11000400 add w0, w0, #0x1 + I 149.054225518 bust_spinlocks: ffff800008631190: + b9005c20 str w0, [x1, #92] + E 149.054225518 bust_spinlocks: ffff800008631194: + d65f03c0 ret + A panic: ffff800008096358 + +Perf based testing +------------------ + +Starting perf session +~~~~~~~~~~~~~~~~~~~~~ +ETF: +perf record -e cs_etm/panicstop,@tmc_etf1/ -C 1 +perf record -e cs_etm/panicstop,@tmc_etf2/ -C 2 + +ETR: +perf record -e cs_etm/panicstop,@tmc_etr0/ -C 1,2 + +Reading trace data after panic +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Same sysfs based method explained above can be used to retrieve and +decode the trace data after the reboot on kernel panic.