Hi Hans,
Thank you for your advice. I prepared some description of DNN accelerator and its usage.
#### Handling memory blocks for Visconti5 accelerators
Visconti5 Image-Processing-Accelerators do not have fine grained IOMMU, as CPU have. Therefore, memory region to be passed to the accelerators should be physically contiguous. We use DMA-BUF backed by CMA (Contiguous Memory Allocator) to allocate memory regions for sharing between CPU/IPAs. Originally, in v4.19 based implementation, the ION allocator was used to allocate DMA-BUF instances. For the latest implementation, DMA-BUF HEAPS is used.
Two structure types are used to represent memory region passed to drivers. * struct drv_ipa_buffer_info * to describe whole DMA-BUF instance * struct drv_ipa_addr * to describe a memory region in a DMA-BUF instance
for details, see usage sample of each IPA driver
#### Image Processing Accelerators overview
Visconti5 SoC has following image processing accererators
* AFFINE: 1 input image, 1 output image; Affine transform, Homography transform, Polynomial lens distortion, LUT transform * DNN: N input feature vector, N output feature vector; Deep neural network operation * PYRAMID 3 input image, 3 * N output image; Resize grayscale/color image with N different parameters * DSPIF: M input image, N output image; Various opeations on images * HOX: 1 input image (multi ROI), 1 input dictionary1 likelihood/feature vector; Extended Histogram of Oriented Gradient based pattern matching * HAMAT: 2 input feature vectors: 1 output corrdinate vector; Hamming distance matching for stereo vision * FLMAT: 3 input image, N input feature point, N output matched point; Optical flow matching * SMLDB: 1 input image, N input feature point, N output feature vector; Accelerated-KAZE feature descriptor accelerator * STMAT: 2 input image, 1 output disparity image; Stereo disparity
see [0] Fig 7.2.1 for block diagram (of prototype chip)
#### DNN accelerator overview
DNN accelerator is a proprietary CNN/DCNN processing accelerator developed by Toshiba. Visconti5 SoC has 2 instances of DNN acclerator hardware. Users convert existing Caffe/ONNX models to Visconti compatible models with an offline tool. A converted model "Configuration Binary" includes: * instruction sequence for given network * weight/bias information * DMA configuration from/to global memory (for input/output feature)
DNN acccelerator can handle either 1 plane or multiple ROIs at a single call.
see [0] Fig 7.2.2 for block diagram of DNN accelerator
CNN: Convolutional Neural Network DCNN: Deep Convolutional Neural Network
#### Input / Output
Input image or feature: base type is either of FP16, FP32, INT8, UINT8, INT16 Output feature vector: base type is either of FP16, FP32, INT8, UINT8, INT16
Input, Output, Weight, Bias can be placed on global memory and loaded/stored with DMA within DNN accelerator. These data on global memory can be specified as either of: * single address to point single data block * list of address to point multiple data blocks (i.e. ROIs)
DNN acclerator driver accepts an instance of "struct drv_dnn_descriptor" which includes addresses of input/output features and a configuration binary.
#### Descriptor Builder at userland
Following APIs are provided to build a descriptor instance at userland.
/* defined in drv_dnn_util.h */ int32_t drv_DNN_config_descript_init(struct drv_dnn_descriptor *desc, struct drv_ipa_buffer_info *buffer, int32_t buffer_num); int32_t drv_DNN_config_exec_configuration(struct drv_dnn_descriptor *desc, const void *configuration_binary, struct drv_ipa_addr configuration_binary_addr, struct drv_ipa_addr *src_list, struct drv_ipa_addr *dst_list, int32_t list_num, struct drv_ipa_addr temporary_addr, int32_t temporary_size); int32_t drv_DNN_config_descript_finalize(struct drv_dnn_descriptor *desc);
struct drv_dnn_descriptor is defined in drivers/soc/visconti/uapi/dnn.h. I think this header should be placed anywhere else to be collected on "make headers_install" action of kernel building.
#### Usage sample (without error handlers)
#include <linux/dma-heap.h> #include "drv_ipa.h" #include "drv_dnn.h" #include "drv_dnn_util.h"
int allocate_buffer(int fd_heap, int size) { struct dma_heap_allocation_data heap_data_in={0}; int ret;
heap_data_in.len = ROUNDUP_POW2(size); heap_data_in.fd_flags = O_RDWR | O_CLOEXEC;
ret = ioctl(fd_heap, DMA_HEAP_IOCTL_ALLOC, &heap_data_in); if (ret <0) return -1; else return heap_data_in.fd; }
void dnn_sample(int fd_dnn, int fd_conf, int fd_src, int fd_dst, int fd_temp) { int32_t ret; struct drv_ipa_buffer_info bufinfo[4] = { {.fd=fd_conf, .coherent=true, .direction=DRV_IPA_DIR_TO_DEVICE}, {.fd=fd_src, .coherent=true, .direction=DRV_IPA_DIR_TO_DEVICE}, {.fd=fd_dst, .coherent=true, .direction=DRV_IPA_DIR_FROM_DEVICE}, {.fd=fd_temp, .coherent=true, .direction=DRV_IPA_DIR_FROM_DEVICE}, }; struct drv_ipa_addr conf_addr = {.buffer_index=0, .offset=0}; struct drv_ipa_addr src_addr = {.buffer_index=1, .offset=0}; struct drv_ipa_addr dst_addr = {.buffer_index=2, .offset=0}; struct drv_ipa_addr temp_addr = {.buffer_index=3, .offset=0}; struct drv_dnn_descriptor desc;
struct drv_ipa_addr src_list[] = {src_addr}; struct drv_ipa_addr dst_list[] = {dst_addr};
uint8_t *config = (uint8_t*)mmap(NULL, DNN_CONF_BIN_SIZE, PROT_READ, MAP_SHARED, fd_conf, 0);
drv_DNN_config_descript_init(&desc, bufinfo, 4); drv_DNN_config_exec_configuration(&desc, config, conf_addr, src_list, dst_list, 1, temp_addr, TEMP_BUF_SIZE); drv_DNN_config_descript_finalize(&desc);
ioctl(fd_dnn, IOC_IPA_START, &desc);
{ struct pollfd fds[] = {.fd=fd_dnn, .events=POLL_IN, .revents=0}; poll(fds, 1, 1000); } }
void sample() { int fd_dnn, fd_heap, fd_conf, fd_src, fd_dst, fd_temp;
fd_dnn = open("/dev/dnn0", O_RDWR); fd_heap = open("/dev/dma_heap/linux,cma", O_RDWR); fd_conf = allocate_buffer(fd_heap, DNN_CONF_BIN_ALLOC_SIZE); fd_src = allocate_buffer(fd_heap, INPUT_IMG_ALLOC_SIZE); fd_dst = allocate_buffer(fd_heap, OUTPUT_IMG_ALLOC_SIZE); fd_temp = allocate_buffer(fd_heap, TEMP_BUF_ALLOC_SIZE);
/* fill in input image and configuration here */
dnn_sample(fd_dnn, fd_conf, fd_src, fd_dst, fd_temp);
... };
#### Reference
* [0] https://toshiba.semicon-storage.com/content/dam/toshiba-ss-v2/master/en/comp... * Fig 7.2.1 shows the whole architecture of prototype chip * Fig 7.2.2 shows the architecture of DNN accelerator
Regards, Yuji
-----Original Message----- From: Hans Verkuil hverkuil@xs4all.nl Sent: Friday, May 20, 2022 7:03 PM To: ishikawa yuji(石川 悠司 ○RDC□AITC○EA開) yuji2.ishikawa@toshiba.co.jp; robh+dt@kernel.org; iwamatsu nobuhiro(岩松 信洋 □SWC◯ACT) nobuhiro1.iwamatsu@toshiba.co.jp; sumit.semwal@linaro.org; christian.koenig@amd.com Cc: linux-arm-kernel@lists.infradead.org; linux-kernel@vger.kernel.org; linux-media@vger.kernel.org; dri-devel@lists.freedesktop.org; linaro-mm-sig@lists.linaro.org Subject: Re: [PATCH 0/4] Add Toshiba Visconti DNN image processing accelerator driver
Hi Yuji,
On 5/20/22 11:48, yuji2.ishikawa@toshiba.co.jp wrote:
Hi Hans,
Thank you for your comment. I agree that this submission lacks documents sharing basic idea of the
accelerators; what do they accept and what do they yield.
Where can I put a new document? Can I put it as a comment in a source? Can
I add a file under Documentation/misc-devices directory?
Start with explaining it by replying to this mail. Without knowing anything about the hardware, it is difficult to say what the best place is. Usually it is either the public API header, or somewhere in Documentation.
The first step is to have a better understanding of the Visconti image hardware and to see what the best subsystem would be to support that hardware.
Regards,
Hans
Thanks, Yuji Ishikawa
-----Original Message----- From: Hans Verkuil hverkuil@xs4all.nl Sent: Thursday, May 12, 2022 8:15 PM To: ishikawa yuji(石川 悠司 ○RDC□AITC○EA開) yuji2.ishikawa@toshiba.co.jp; Rob Herring robh+dt@kernel.org; iwamatsu nobuhiro(岩松 信洋 □SWC◯ACT) nobuhiro1.iwamatsu@toshiba.co.jp; Sumit Semwal sumit.semwal@linaro.org; Christian König
Cc: linux-arm-kernel@lists.infradead.org; linux-kernel@vger.kernel.org; linux-media@vger.kernel.org; dri-devel@lists.freedesktop.org; linaro-mm-sig@lists.linaro.org Subject: Re: [PATCH 0/4] Add Toshiba Visconti DNN image processing accelerator driver
Hi Yuji,
On 4/28/22 15:11, Yuji Ishikawa wrote:
This series is the DNN image processing accelerator driver for Toshiba's ARM
SoC, Visconti[0].
This provides DT binding documentation, device driver, MAINTAINER
files.
The second patch "soc: visconti: Add Toshiba Visconti image processing
accelerator common source"
and the fourth patch "MAINTAINERS: ..." are the same as the ones in the
preceding post for affine driver.
There appears to be no documentation whatsoever, unless I am missing something.
How is the uAPI supposed to be used? What does it do? What formats does it accept or produce?
If this processes images, then (as Laurent mentioned) this is more suitable as a V4L2 mem2mem driver.
See https://linuxtv.org/downloads/v4l-dvb-apis-new/userspace-api/v4l/dev- me m2mem.html and the many drivers in drivers/media that use it (git grep
v4l2-mem2mem.h).
But without any explanation whatsoever I have no idea what does or does not make sense.
Regards,
Hans
Best regards, Yuji
[0]:
https://toshiba.semicon-storage.com/ap-en/semiconductor/product/image
recognition-processors-visconti.html
Yuji Ishikawa (4): dt-bindings: soc: visconti: Add Toshiba Visconti DNN image processing accelerator bindings soc: visconti: Add Toshiba Visconti image processing accelerator common source soc: visconti: Add Toshiba Visconti DNN image processing accelerator MAINTAINERS: Add entries for Toshiba Visconti DNN image processing accelerator
.../soc/visconti/toshiba,visconti-dnn.yaml | 54 ++ MAINTAINERS | 2 + drivers/soc/Kconfig | 1 + drivers/soc/Makefile | 1 + drivers/soc/visconti/Kconfig | 7 + drivers/soc/visconti/Makefile | 8 + drivers/soc/visconti/dnn/Makefile | 6 + drivers/soc/visconti/dnn/dnn.c | 533
++++++++++++++++++
drivers/soc/visconti/dnn/hwd_dnn.c | 183 ++++++ drivers/soc/visconti/dnn/hwd_dnn.h | 68 +++ drivers/soc/visconti/dnn/hwd_dnn_reg.h | 228 ++++++++ drivers/soc/visconti/ipa_common.c | 55 ++ drivers/soc/visconti/ipa_common.h | 18 + drivers/soc/visconti/uapi/dnn.h | 77 +++ drivers/soc/visconti/uapi/ipa.h | 88 +++ 15 files changed, 1329 insertions(+) create mode 100644 Documentation/devicetree/bindings/soc/visconti/toshiba,visconti-dnn. ya ml create mode 100644 drivers/soc/visconti/Kconfig create mode 100644 drivers/soc/visconti/Makefile create mode 100644 drivers/soc/visconti/dnn/Makefile create mode 100644 drivers/soc/visconti/dnn/dnn.c create mode 100644 drivers/soc/visconti/dnn/hwd_dnn.c create mode 100644 drivers/soc/visconti/dnn/hwd_dnn.h create mode 100644 drivers/soc/visconti/dnn/hwd_dnn_reg.h create mode 100644 drivers/soc/visconti/ipa_common.c create mode 100644 drivers/soc/visconti/ipa_common.h create mode 100644 drivers/soc/visconti/uapi/dnn.h create mode 100644 drivers/soc/visconti/uapi/ipa.h