On 29/08/2023 05:44, Steve Clevenger wrote:
Ampere has been using the following command sequence to generate a 'perf record' kernel instruction trace on an AmpereOne AARCH64 based systems using a 6.3.0 Fedora distribution with CoreSight related patches.
[root@sut01sys-b212 kernel]# uname -a Linux sut01sys-b212.scc-lab.amperecomputing.com 6.3.0-coresight-enabled+ #9 SMP PREEMPT_DYNAMIC Fri Jun 30 12:54:14 PDT 2023 aarch64 aarch64 aarch64 GNU/Linux [root@sut01sys-b212 kernel]# [root@sut01sys-b212 kernel]# timeout 45s perf record --kcore -o kcore -e cs_etm/@tmc_etr63/k --per-thread taskset --cpu-list 15 dd if=/dev/zero of=/dev/null [ perf record: Woken up 41 times to write data ] [ perf record: Captured and wrote 144.056 MB kcore ] [root@sut01sys-b212 kernel]# [root@sut01sys-b212 kernel]# ls -l ~/linux/vmlinux -rwxr-xr-x. 1 root root 390426912 Jun 30 12:54 /home/stevec/linux/vmlinux* [root@sut01sys-b212 kernel]# [root@sut01sys-b212 kernel]# timeout 45s perf script --input ./kcore/data -s ../../scripts/arm-cs-trace-disasm.py -F cpu,event,ip,addr,sym – -d objdump -k ~/linux/vmlinux > ./perf.itrace [root@sut01sys-b212 kernel]# [root@sut01sys-b212 kernel]# ls -l perf.itrace -rw-r--r--. 1 root root 485834744 Jul 17 14:18 perf.itrace
The executive summary is the code sections in vmlinux do not match the actual code executing on the target due to self-modifying code (alternate code sequences) in the kernel image. These sequences are typically applied over nop place-holder instructions. This was verified by comparing a location in the ./drivers/char/mem.c read_zero objdump instruction stream to the memory resident instructions captured with the TRACE32 ETM instruction trace feature. This particular instruction trace example shows a disconnect. It displays a ‘b ffff800008ab8a70 <read_zero+0x168>’ instruction at address 0xffff800008ab89e8 which did not branch. The actual instruction present at 0xffff800008ab89e8 is a ‘nop’. . . ffff800008ab89a8: 1400000d b ffff800008ab89dc <read_zero+0xd4> dd 8774/8774 [0015] 0.000000000 read_zero+0xa0 ffff800008ab89dc <read_zero+0xd4>: ffff800008ab89dc: 9248f840 and x0, x2, #0xff7fffffffffffff ffff800008ab89e0: aa1403e1 mov x1, x20 ffff800008ab89e4: 9418b6fb bl ffff8000090e65d0 <__arch_clear_user> dd 8774/8774 [0015] 0.000000000 read_zero+0xdc ffff8000090e65d0 <__arch_clear_user>: ffff8000090e65d0: d503245f bti c ffff8000090e65d4: 8b010002 add x2, x0, x1 ffff8000090e65d8: f1002021 subs x1, x1, #0x8 ffff8000090e65dc: 54000104 b.mi ffff8000090e65fc <__arch_clear_user+0x2c> // b.first ffff8000090e65e0: f800081f sttr xzr, [x0] ffff8000090e65e4: 91002000 add x0, x0, #0x8 ffff8000090e65e8: f1002021 subs x1, x1, #0x8 ffff8000090e65ec: 54ffffa8 b.hi ffff8000090e65e0 <__arch_clear_user+0x10> // b.pmore dd 8774/8774 [0015] 0.000000000 __arch_clear_user+0x1c ...vec/linux/arch/arm64/lib/clear_user.S 31 b.hi 1b ffff8000090e65e0 <__arch_clear_user+0x10>: ffff8000090e65e0: f800081f sttr xzr, [x0] ffff8000090e65e4: 91002000 add x0, x0, #0x8 ffff8000090e65e8: f1002021 subs x1, x1, #0x8 ffff8000090e65ec: 54ffffa8 b.hi ffff8000090e65e0 <__arch_clear_user+0x10> // b.pmore . . ffff8000090e65f0: f81f885f sttr xzr, [x2, #-8] ffff8000090e65f4: d2800000 mov x0, #0x0 // #0 ffff8000090e65f8: d65f03c0 ret dd 8774/8774 [0015] 0.000000000 __arch_clear_user+0x28 ...vec/linux/arch/arm64/lib/clear_user.S 34 ret ffff800008ab89e8 <read_zero+0xe0>: ffff800008ab89e8: 14000022 b ffff800008ab8a70 <read_zero+0x168> ffff800008ab89ec: d503201f nop dd 8774/8774 [0015] 0.000000000 read_zero+0xe4 /home/stevec/linux/drivers/char/mem.c 521 left = clear_user(buf + cleared, chunk); ffff800008ab8a18 <read_zero+0x110>: ffff800008ab8a18: 8b14035a add x26, x26, x20 ffff800008ab8a1c: b5000360 cbnz x0, ffff800008ab8a88 <read_zero+0x180> ffff800008ab8a20: f9400320 ldr x0, [x25] ffff800008ab8a24: cb140273 sub x19, x19, x20 . .
Ostensibly, the ‘perf record –kcore’ option produces a representative image of the kernel. But this option does not produce suitable output to generate ARM64 kernel instruction trace. perf doesn’t disassemble ARM64, so the arm-cs-trace-disasm.py python script is used with the native objdump utility to provide ARM64 disassembly from CoreSight trace capture. objdump itself requires an ELF/DWARF file image + symbols to generate the symbolic (+ line information for mixed source) disassembly. The linux vmlinux image + symbols file is typically used for this purpose. The kallsyms file is not formatted for objdump use. As an experiment, I patched the executable code sections in a local copy of vmlinux with the corresponding executable code segments extracted from the kcore image using an Ampere internal ELF patch utility.
This patch utility leverages the (MIT Licensed) ELFIO open source library API. These were the commands.
[root@sut01sys-b212 kernel]# timeout 30s perf record --kcore -o kcore -e cs_etm/@tmc_etr63/k --per-thread taskset --cpu-list 15 dd if=/dev/zero of=/dev/null [ perf record: Woken up 25 times to write data ] [ perf record: Captured and wrote 88.053 MB kcore ] [root@sut01sys-b212 kernel]# [root@sut01sys-b212 kernel]# ls -l ~/linux/vmlinux -rwxr-xr-x. 1 root root 390426912 Jun 30 12:54 /home/stevec/linux/vmlinux* [root@sut01sys-b212 kernel]# cp ~/linux/vmlinux . [root@sut01sys-b212 kernel]# patch-elf --help
patch-elf overlays the kernel image from a local copy of '/proc/kcore' to the corresponding (by address) ELF sections in a local copy of the vmlinux ELF file. A local '/proc/kcore' is created by: 'perf report --kcore -e cs_etm/@tmc_etr1/k ...' The local (patched) vmlinux copy is used by: 'perf script -s arm-cs-trace-disasm.py ...' See the CoreSight Hardware-Assisted Trace Application Note for use of the 'perf report' and 'perf script' commands.
Usage: patch-elf <--verbose> kcore_file vmlinux_file [root@sut01sys-b212 kernel]# [root@sut01sys-b212 kernel]# patch-elf kcore/kcore_dir/kcore ./vmlinux ELF File kcore Properties ELF file class: ELF64 ELF file encoding: Little endian Machine: ARM AArch64 Type: Core file Number of segments: 3 Number of sections: 0
ELF File vmlinux Properties ELF file class: ELF64 ELF file encoding: Little endian Machine: ARM AArch64 Type: Shared object file Number of segments: 3 Number of sections: 43
Patching section[ 2] ffff800008010000 17997936 bytes
Patching section[15] ffff800009a31000 20480 bytes
Patching section[16] ffff800009a40000 612372 bytes
Patching section[17] ffff800009ad5818 24752 bytes
[root@sut01sys-b212 kernel]# ls -l ./vmlinux -rwxr-xr-x. 1 root root 390426908 Jul 19 11:14 ./vmlinux* [root@sut01sys-b212 kernel]# [root@sut01sys-b212 kernel]# timeout 45s perf script --input ./kcore/data -s ../../scripts/arm-cs-trace-disasm.py -F cpu,event,ip,addr,sym – -d objdump -k ./vmlinux > ./perf.itrace [root@sut01sys-b212 kernel]# [root@sut01sys-b212 kernel]# ls -l perf.itrace -rw-r--r--. 1 root root 32142060 Jul 19 11:18 perf.itrace
Here is the representative kernel instruction trace using a patched vmlinux.
. . ffff800008ab89a8: 1400000d b ffff800008ab89dc
<read_zero+0xd4> dd 8774/8774 [0015] 0.000000000 read_zero+0xa0 ffff800008ab89dc <read_zero+0xd4>: ffff800008ab89dc: 9248f840 and x0, x2, #0xff7fffffffffffff ffff800008ab89e0: aa1403e1 mov x1, x20 ffff800008ab89e4: 9418b6fb bl ffff8000090e65d0 <__arch_clear_user> dd 8774/8774 [0015] 0.000000000 read_zero+0xdc ffff8000090e65d0 <__arch_clear_user>: ffff8000090e65d0: d503245f bti c ffff8000090e65d4: 8b010002 add x2, x0, x1 ffff8000090e65d8: f1002021 subs x1, x1, #0x8 ffff8000090e65dc: 54000104 b.mi ffff8000090e65fc <__arch_clear_user+0x2c> // b.first ffff8000090e65e0: f800081f sttr xzr, [x0] ffff8000090e65e4: 91002000 add x0, x0, #0x8 ffff8000090e65e8: f1002021 subs x1, x1, #0x8 ffff8000090e65ec: 54ffffa8 b.hi ffff8000090e65e0 <__arch_clear_user+0x10> // b.pmore dd 8774/8774 [0015] 0.000000000 __arch_clear_user+0x1c ffff8000090e65e0 <__arch_clear_user+0x10>: ffff8000090e65e0: f800081f sttr xzr, [x0] ffff8000090e65e4: 91002000 add x0, x0, #0x8 ffff8000090e65e8: f1002021 subs x1, x1, #0x8 ffff8000090e65ec: 54ffffa8 b.hi ffff8000090e65e0 <__arch_clear_user+0x10> // b.pmore . . ffff8000090e65f0: f81f885f sttr xzr, [x2, #-8] ffff8000090e65f4: d2800000 mov x0, #0x0 // #0 ffff8000090e65f8: d65f03c0 ret dd 8774/8774 [0015] 0.000000000 __arch_clear_user+0x28 ...vec/linux/arch/arm64/lib/clear_user.S 34 ret ffff800008ab89e8 <read_zero+0xe0>: ffff800008ab89e8: d503201f nop ffff800008ab89ec: 1400000b b ffff800008ab8a18 <read_zero+0x110> dd 8774/8774 [0015] 0.000000000 read_zero+0xe4 /home/stevec/linux/drivers/char/mem.c 521 left = clear_user(buf + cleared, chunk); ffff800008ab8a18 <read_zero+0x110>: ffff800008ab8a18: 8b14035a add x26, x26, x20 ffff800008ab8a1c: b5000360 cbnz x0, ffff800008ab8a88 <read_zero+0x180> ffff800008ab8a20: f9400320 ldr x0, [x25] ffff800008ab8a24: cb140273 sub x19, x19, x20 . . .
This begs the question what perf enhancements could be added to make ARM64 kernel instruction trace easier to use? The process I’ve followed is cumbersome, but could be done behind the scenes by perf. The caveat is it requires a vmlinux which might not be available to an end user. Here are 2 options.
- 'perf report -kcore'could use the process I’ve used here
transparently in the background. The plus side is the objdump feature of mixed disassembly is available based on the current vmlinux.
Hi Steve,
What you're saying makes sense to me. I think #1 sounds best, I'm not sure of the use-case where you wanted to make actionable decisions from the trace but wouldn't have vmlinux available? Maybe an end-user could be missing it, but I can only imagine use cases where you are actively building and developing the kernel.
- 'perf report -kcore' generates an ELF + symbols file based on
kallsyms (and/or System.map). No vmlinux patching, so intermixed source and disassembly wouldn’t be available. It’s a reasonable alternative without relying on vmlinux.
It makes sense performance-wise to use an ARM64 disassembler directly through perf. perf-script use of the arm-cs-trace-disasm.py python script can be slow. I’m unfamiliar with the Intel implementation, but perf-annotate uses objdump. Unfortunately, I can't seem to get annotate to work for me. A patch operation is still be required if vmlinux is used.
We have had other reports about arm-cs-trace-disasm.py being slow. I had a plan to make it work with disassembly directly from Perf as that is available in other modes. For example the annotate mode in perf already works on Arm. What error are you getting with it exactly? It might require installation of the aarch64 objdump tool if you are running on x86, or provide the --objdump option?
I suspect the CoreSight/perf communities are aware of these issues. Is there any ongoing work not known to the outside world?
Thanks and regards, Steve C.
On Tue, Aug 29, 2023 at 01:55:45PM +0100, James Clark wrote:
[...]
Ostensibly, the ‘perf record –kcore’ option produces a representative image of the kernel. But this option does not produce suitable output to generate ARM64 kernel instruction trace. perf doesn’t disassemble ARM64, so the arm-cs-trace-disasm.py python script is used with the native objdump utility to provide ARM64 disassembly from CoreSight trace capture. objdump itself requires an ELF/DWARF file image + symbols to generate the symbolic (+ line information for mixed source) disassembly. The linux vmlinux image + symbols file is typically used for this purpose. The kallsyms file is not formatted for objdump use. As an experiment, I patched the executable code sections in a local copy of vmlinux with the corresponding executable code segments extracted from the kcore image using an Ampere internal ELF patch utility.
This patch utility leverages the (MIT Licensed) ELFIO open source library API. These were the commands.
[root@sut01sys-b212 kernel]# timeout 30s perf record --kcore -o kcore -e cs_etm/@tmc_etr63/k --per-thread taskset --cpu-list 15 dd if=/dev/zero of=/dev/null [ perf record: Woken up 25 times to write data ] [ perf record: Captured and wrote 88.053 MB kcore ] [root@sut01sys-b212 kernel]# [root@sut01sys-b212 kernel]# ls -l ~/linux/vmlinux -rwxr-xr-x. 1 root root 390426912 Jun 30 12:54 /home/stevec/linux/vmlinux* [root@sut01sys-b212 kernel]# cp ~/linux/vmlinux . [root@sut01sys-b212 kernel]# patch-elf --help
patch-elf overlays the kernel image from a local copy of '/proc/kcore' to the corresponding (by address) ELF sections in a local copy of the vmlinux ELF file. A local '/proc/kcore' is created by: 'perf report --kcore -e cs_etm/@tmc_etr1/k ...' The local (patched) vmlinux copy is used by: 'perf script -s arm-cs-trace-disasm.py ...' See the CoreSight Hardware-Assisted Trace Application Note for use of the 'perf report' and 'perf script' commands.
Usage: patch-elf <--verbose> kcore_file vmlinux_file [root@sut01sys-b212 kernel]# [root@sut01sys-b212 kernel]# patch-elf kcore/kcore_dir/kcore ./vmlinux ELF File kcore Properties ELF file class: ELF64 ELF file encoding: Little endian Machine: ARM AArch64 Type: Core file Number of segments: 3 Number of sections: 0
ELF File vmlinux Properties ELF file class: ELF64 ELF file encoding: Little endian Machine: ARM AArch64 Type: Shared object file Number of segments: 3 Number of sections: 43
Patching section[ 2] ffff800008010000 17997936 bytes
Patching section[15] ffff800009a31000 20480 bytes
Patching section[16] ffff800009a40000 612372 bytes
Patching section[17] ffff800009ad5818 24752 bytes
[root@sut01sys-b212 kernel]# ls -l ./vmlinux -rwxr-xr-x. 1 root root 390426908 Jul 19 11:14 ./vmlinux* [root@sut01sys-b212 kernel]# [root@sut01sys-b212 kernel]# timeout 45s perf script --input ./kcore/data -s ../../scripts/arm-cs-trace-disasm.py -F cpu,event,ip,addr,sym – -d objdump -k ./vmlinux > ./perf.itrace [root@sut01sys-b212 kernel]# [root@sut01sys-b212 kernel]# ls -l perf.itrace -rw-r--r--. 1 root root 32142060 Jul 19 11:18 perf.itrace
Here is the representative kernel instruction trace using a patched vmlinux.
. . ffff800008ab89a8: 1400000d b ffff800008ab89dc
<read_zero+0xd4> dd 8774/8774 [0015] 0.000000000 read_zero+0xa0 ffff800008ab89dc <read_zero+0xd4>: ffff800008ab89dc: 9248f840 and x0, x2, #0xff7fffffffffffff ffff800008ab89e0: aa1403e1 mov x1, x20 ffff800008ab89e4: 9418b6fb bl ffff8000090e65d0 <__arch_clear_user> dd 8774/8774 [0015] 0.000000000 read_zero+0xdc ffff8000090e65d0 <__arch_clear_user>: ffff8000090e65d0: d503245f bti c ffff8000090e65d4: 8b010002 add x2, x0, x1 ffff8000090e65d8: f1002021 subs x1, x1, #0x8 ffff8000090e65dc: 54000104 b.mi ffff8000090e65fc <__arch_clear_user+0x2c> // b.first ffff8000090e65e0: f800081f sttr xzr, [x0] ffff8000090e65e4: 91002000 add x0, x0, #0x8 ffff8000090e65e8: f1002021 subs x1, x1, #0x8 ffff8000090e65ec: 54ffffa8 b.hi ffff8000090e65e0 <__arch_clear_user+0x10> // b.pmore dd 8774/8774 [0015] 0.000000000 __arch_clear_user+0x1c ffff8000090e65e0 <__arch_clear_user+0x10>: ffff8000090e65e0: f800081f sttr xzr, [x0] ffff8000090e65e4: 91002000 add x0, x0, #0x8 ffff8000090e65e8: f1002021 subs x1, x1, #0x8 ffff8000090e65ec: 54ffffa8 b.hi ffff8000090e65e0 <__arch_clear_user+0x10> // b.pmore . . ffff8000090e65f0: f81f885f sttr xzr, [x2, #-8] ffff8000090e65f4: d2800000 mov x0, #0x0 // #0 ffff8000090e65f8: d65f03c0 ret dd 8774/8774 [0015] 0.000000000 __arch_clear_user+0x28 ...vec/linux/arch/arm64/lib/clear_user.S 34 ret ffff800008ab89e8 <read_zero+0xe0>: ffff800008ab89e8: d503201f nop ffff800008ab89ec: 1400000b b ffff800008ab8a18 <read_zero+0x110> dd 8774/8774 [0015] 0.000000000 read_zero+0xe4 /home/stevec/linux/drivers/char/mem.c 521 left = clear_user(buf + cleared, chunk); ffff800008ab8a18 <read_zero+0x110>: ffff800008ab8a18: 8b14035a add x26, x26, x20 ffff800008ab8a1c: b5000360 cbnz x0, ffff800008ab8a88 <read_zero+0x180> ffff800008ab8a20: f9400320 ldr x0, [x25] ffff800008ab8a24: cb140273 sub x19, x19, x20 . . .
This begs the question what perf enhancements could be added to make ARM64 kernel instruction trace easier to use? The process I’ve followed is cumbersome, but could be done behind the scenes by perf. The caveat is it requires a vmlinux which might not be available to an end user. Here are 2 options.
- 'perf report -kcore'could use the process I’ve used here
transparently in the background. The plus side is the objdump feature of mixed disassembly is available based on the current vmlinux.
Hi Steve,
What you're saying makes sense to me. I think #1 sounds best, I'm not sure of the use-case where you wanted to make actionable decisions from the trace but wouldn't have vmlinux available? Maybe an end-user could be missing it, but I can only imagine use cases where you are actively building and developing the kernel.
Some inputs for this topic.
The doc tools/perf/Documentation/perf.data-directory-format.txt gives hint that 'perf script' can use the kcore file for kernel data. Based on this, we might can explore the approaches provided in tools/perf/scripts/python/Perf-Trace-Util/Context.c, so we can rely on perf's DSO and map to dump instructions and source lines.
intel-pt-events.py (intel-pt trace dump script) uses above method to dump instructions and source lines.
- 'perf report -kcore' generates an ELF + symbols file based on
kallsyms (and/or System.map). No vmlinux patching, so intermixed source and disassembly wouldn’t be available. It’s a reasonable alternative without relying on vmlinux.
It makes sense performance-wise to use an ARM64 disassembler directly through perf. perf-script use of the arm-cs-trace-disasm.py python script can be slow. I’m unfamiliar with the Intel implementation, but perf-annotate uses objdump. Unfortunately, I can't seem to get annotate to work for me. A patch operation is still be required if vmlinux is used.
We have had other reports about arm-cs-trace-disasm.py being slow.
Yeah, this is a known issue. I can think about a improvement is that we can dump the source and disassembly once for the whole kernel and save into memory (e.g. save into a variable in python script or in the C program), then afterwards we can just read out the info from the variable based on the start and end address, this can avoid to call objdump for every code chunk.
Before we proceed for this, I think it's good to see if we can use Perf-Trace-Util/Context.c to speed up trace dumping.
Thanks, Leo